#### Market Equilibrium and the Core

Ram Singh

Lecture 4

Ram Singh (DSE)

## Competitive Equilibrium and Core: $2 \times 2$ Economy I

Assume 'well-behaved' utilities. In that case,

- at the equilibrium allocation,  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ , the ICs are tangent to each other
- Therefore, the equilibrium allocation  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$  is Pareto Optimum.

#### Question

Suppose,  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$  is a Competitive (market) equilibrium allocation

- Are unilateral deviations from  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$  profitable?
- Can a subgroup profitably deviate from  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ ?
- Does the eq. allocation  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$  belong to the core?

• • • • • • • • • • • • •

## Competitive Equilibrium and Core: $2 \times 2$ Economy II

For a 2 × 2 economy, suppose an allocation  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$  along with a price vector  $\mathbf{p} = (p_1, p_2)$  is competitive equilibrium. Then,

- Individual i prefers x<sup>i</sup> at least as much as e<sup>i</sup>
- Indifference curves of the individuals are tangent to each other
- Allocation  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$  is Pareto Optimum
- In view of the above, allocation  $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$  is in the Core.

(日)

#### Competitive Equilibrium and Core: $2 \times 2$ Economy



## Competitive Equilibrium and Core I

Let

- $W(u^i(.), \mathbf{e}^i)_{N \times M}$  denote the set of Walrasian/competitive allocations.
- $C(u^i(.), \mathbf{e}^i)_{N \times M}$  denote the set of Core allocations.

We know that for a 2  $\times$  2 economy,

$$\mathbf{x} \in W(u^i(.), \mathbf{e}^i) \Rightarrow \mathbf{x} \in C(u^i(.), \mathbf{e}^i).$$

#### Theorem

Consider an exchange economy  $(u^i(.), \mathbf{e}^i)_{N \times M}$ , where individual preferences are monotonic, i.e.,  $u^i$  is increasing. If  $\mathbf{x}$  is a WEA, then  $\mathbf{x} \in C(u^i(.), \mathbf{e}^i)_{N \times M}$ . Formally,

$$W(u^i(.), \mathbf{e}^i)_{N imes M} \subseteq C(u^i(.), \mathbf{e}^i)_{N imes M}$$

< ロ > < 同 > < 回 > < 回 >

## Competitive Equilibrium and Core II

**Proof**: Take any **x** WEA. Let, **x** along with the price vector **p** be a WE. Suppose

 $\mathbf{x} \notin C(\mathbf{e}).$ 

Therefore, there exists a 'blocking coalition' against **x**. That is, there exists a set  $S \subseteq N$  and an 'allocation' say **y**, s.t.

$$\sum_{i\in\mathcal{S}} \mathbf{y}^i = \sum_{i\in\mathcal{S}} \mathbf{e}^i \tag{1}$$

Moreover,

$$u^{i}(\mathbf{y}^{i}) \geq u^{i}(\mathbf{x}^{i})$$
 for all  $i \in S$  (2)

and for some  $i' \in S$ 

$$u^{i}(\mathbf{y}^{i'}) > u^{i}(\mathbf{x}^{i'}). \tag{3}$$

(1) implies

$$\mathbf{p}.\sum_{i\in\mathcal{S}}\mathbf{y}^{i}=\mathbf{p}.\sum_{i\in\mathcal{S}}\mathbf{e}^{i}$$
(4)

## Competitive Equilibrium and Core III

(2) implies

$$\mathbf{p}.\mathbf{y}^i \ge \mathbf{p}.\mathbf{x}^i = \mathbf{p}.\mathbf{e}^i$$
, for all  $i \in S$  (5)

(3) implies: for some  $i' \in S$ 

$$\mathbf{p}.\mathbf{y}^{i'} > \mathbf{p}.\mathbf{x}^{i'} = \mathbf{p}.\mathbf{e}^{i'}.$$
(6)

(5) and (6) together give us:

$$\mathbf{p}.\sum_{i\in\mathcal{S}}\mathbf{y}^i > \mathbf{p}.\sum_{i\in\mathcal{S}}\mathbf{e}^i \tag{7}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

But, (4) and (7) are mutually contradictory. Therefore,

 $\mathbf{x} \in C(\mathbf{e}).$ 

# Competitive Equilibrium and Pareto Optimality

So, we have proved the First Fundamental Theorem of Welfare Economics:

Theorem

Consider an exchange economy  $(u^i, \mathbf{e}^i)_{i \in \{1,..,N\}}$ , where  $u^i$  is strictly increasing, for all i = 1, .., N.

Every WEA is Pareto optimum.

< ロ > < 同 > < 回 > < 回 >

# Competitive Equilibrium: Merits and Demerits

#### Question

- Is the price/market economy better than the barter economy, in terms of its functioning?
- Is the price/market economy better than the barter economy, in terms of the outcome achieved?

#### Question

- What are the limitations of a market economy?
- Can these limitations be overcome?

A I > A = A A