Market Equilibrium and the Core

Ram Singh

Lecture 4
Assume ‘well-behaved’ utilities. In that case,

- at the equilibrium allocation, \(\hat{x} = (\hat{x}^1, \hat{x}^2) \),
 the ICs are tangent to each other
- Therefore, the equilibrium allocation \(\hat{x} = (\hat{x}^1, \hat{x}^2) \) is Pareto Optimum.

Question

Suppose, \(\hat{x} = (\hat{x}^1, \hat{x}^2) \) is a Competitive (market) equilibrium allocation

- Are unilateral deviations from \(\hat{x} = (\hat{x}^1, \hat{x}^2) \) profitable?
- Can a subgroup profitably deviate from \(\hat{x} = (\hat{x}^1, \hat{x}^2) \)?
- Does the eq. allocation \(\hat{x} = (\hat{x}^1, \hat{x}^2) \) belong to the core?
For a 2×2 economy, suppose an allocation $\hat{x} = (\hat{x}^1, \hat{x}^2)$ along with a price vector $p = (p_1, p_2)$ is competitive equilibrium. Then,

- Individual i prefers x^i at least as much as e^i
- Indifference curves of the individuals are tangent to each other
- Allocation $\hat{x} = (\hat{x}^1, \hat{x}^2)$ is Pareto Optimum
- In view of the above, allocation $\hat{x} = (\hat{x}^1, \hat{x}^2)$ is in the Core.
Competitive Equilibrium and Core: 2×2 Economy
Competitive Equilibrium and Core I

Let

- \(W(u^i(.), e^i)_{N \times M} \) denote the set of Walrasian/competitive allocations.
- \(C(u^i(.), e^i)_{N \times M} \) denote the set of Core allocations.

We know that for a \(2 \times 2 \) economy,

\[
 x \in W(u^i(.), e^i) \Rightarrow x \in C(u^i(.), e^i).
\]

Theorem

Consider an exchange economy \((u^i(.), e^i)_{N \times M} \), where individual preferences are monotonic, i.e., \(u^i \) is increasing. If \(x \) is a WEA, then \(x \in C(u^i(.), e^i)_{N \times M} \).

Formally,

\[
 W(u^i(.), e^i)_{N \times M} \subseteq C(u^i(.), e^i)_{N \times M}.
\]
Proof: Take any \(x \) WEA. Let, \(x \) along with the price vector \(p \) be a WE. Suppose
\[x \notin C(e). \]

Therefore, there exists a ‘blocking coalition’ against \(x \). That is, there exists a set \(S \subseteq N \) and an ’allocation’ say \(y \), s.t.
\[\sum_{i \in S} y^i = \sum_{i \in S} e^i \] (1)

Moreover,
\[u^i(y^i) \geq u^i(x^i) \] for all \(i \in S \) (2)

and for some \(i' \in S \)
\[u^i(y^{i''}) > u^i(x^{i'}) \] (3)

(1) implies
\[p \cdot \sum_{i \in S} y^i = p \cdot \sum_{i \in S} e^i \] (4)
(2) implies
\[p.y^i \geq p.x^i = p.e^i, \quad \text{for all } i \in S \] (5)

(3) implies: for some \(i' \in S \)
\[p.y^{i'} > p.x^{i'} = p.e^{i'}. \] (6)

(5) and (6) together give us:
\[p. \sum_{i \in S} y^i > p. \sum_{i \in S} e^i \] (7)

But, (4) and (7) are mutually contradictory. Therefore,
\[x \in C(e). \]
So, we have proved the First Fundamental Theorem of Welfare Economics:

Theorem

Consider an exchange economy \((u^i, e^i)_{i \in \{1, \ldots, N\}}\), where \(u^i\) is strictly increasing, for all \(i = 1, \ldots, N\).

Every WEA is Pareto optimum.
Competitive Equilibrium: Merits and Demerits

Question

- Is the price/market economy better than the barter economy, in terms of its functioning?
- Is the price/market economy better than the barter economy, in terms of the outcome achieved?

Question

- What are the limitations of a market economy?
- Can these limitations be overcome?