Number and Stability of Walrasian Equilibria

Ram Singh

Microeconomic Theory

Lecture 9-10

Ram Singh: (DSE)

General Equilibrium Analysis

Lecture 9-10 1 / 22

Excess Demand Function: Basics I

Consider a $N \times M$ economy: Let, M = 2 and $\mathbf{p} = (p, 1)$ be a price vector, where p > 0.

Let $\mathbf{z}(\mathbf{p}) = (z_1(\mathbf{p}), z_2(\mathbf{p}))$ be the excess demand function.

p* is an equilibrium price vector if and only if

$$z_1(\mathbf{p}^*) = 0$$
 and $z_2(\mathbf{p}^*) = 0$.

That is, iff

$$z_1(\mathbf{p}^*) = 0$$

$$\vdots = \vdots$$

$$z_M(\mathbf{p}^*) = 0;$$

Clearly,

$$[(z_1(\mathbf{p}), z_2(\mathbf{p})) = (0, 0)]$$
 iff $z_1(\mathbf{p}) = 0$

Ram Singh: (DSE)

General Equilibrium Analysis

Excess Demand Function: Basics II

Lemma

For M = 2, Price vector $\mathbf{p} = (p, 1)$ is equilibrium price vector of a 2 × 2 economy iff $z_1(\mathbf{p}) = 0$. That is, iff $z_{M-1}(\mathbf{p}) = 0$

For any $N \times M$ economy, consider

- a price vector say $\mathbf{p} = (p_1, p_2, ..., p_M)$
- another price vector $\mathbf{p}' = \frac{1}{p_M} \mathbf{p} = (\frac{p_1}{p_M}, \frac{p_2}{p_M}, ..., 1) = (p'_1, p'_2, ..., 1)$
- Individual and aggregate demand under p' will be exactly the same as under p.

So, WLOG we can consider vectors in the set

$$\mathbb{P} = \{ \mathbf{p} | \mathbf{p} \in \mathbb{R}^M_{++}, \text{ and } \mathbf{p}_M = \mathbf{1} \}$$

Excess Demand Function: Basics III

Let

$$\mathbf{p}_{\sim M} = (p_1, ..., p_{M-1})$$
 and
 $\mathbf{z}_{\sim M} = (z_1(\mathbf{p}), ..., z_{M-1}(\mathbf{p}))$

Therefore,

$$\mathbf{p} = (\mathbf{p}_{\backsim M}, 1)$$
 and $\mathbf{z} = (\mathbf{z}_{\backsim M}, \mathbf{z}_M)$

Again, a price vector $\mathbf{p} = (p_1, ..., p_{M-1}, 1)$ is an equilibrium price vector if it solves the $M \times M$ system $\mathbf{z} = (\mathbf{z}_{\sim M}, \mathbf{z}_M) = \mathbf{0}$, i.e., if it solves the system:

$$z_1(\mathbf{p}) = 0$$

$$\vdots = \vdots$$

$$z_{M-1}(\mathbf{p}) = 0$$

$$z_M(\mathbf{p}) = 0.$$

Ram Singh: (DSE)

General Equilibrium Analysis

< ロ > < 同 > < 回 > < 回 >

Excess Demand Function: Basics IV

From Walras Law: $p_1 z_1(\mathbf{p}) + + p_{M-1} z_{M-1}(\mathbf{p}) + p_M z_M(\mathbf{p}) = 0$. If

$$z_1(\mathbf{p}) = 0$$

$$\vdots = \vdots$$

$$z_{M-1}(\mathbf{p}) = 0;$$

then $z_M(\mathbf{p}) = 0$.

Proposition

A price vector $\mathbf{p} = (p_1, ..., p_{M-1}, 1)$ is an equilibrium price vector iff it solves the following system of M - 1 equations: $\mathbf{z}_{\sim M}(\mathbf{p}) = \mathbf{0}$, i.e., iff it solves the system:

$$\begin{aligned} z_1(\mathbf{p}) &= 0\\ \vdots &= \vdots\\ z_{M-1}(\mathbf{p}) &= 0. \end{aligned}$$

General Equilibrium Analysis

Local Uniqueness of WE: Two Goods I

For a $N \times 2$ economy:

Definition

An equilibrium price vector $\mathbf{p} = (p_1, 1)$ is called regular if $z'_1(\mathbf{p}) \neq 0$.

Definition

An $N \times 2$ economy is regular if every **equilibrium** price vector $\mathbf{p} = (p_1, 1)$ is regular.

Theorem

A regular equilibrium price vector $\mathbf{p} = (p_1, 1)$ is locally unique. That is, there exists an $\epsilon > 0$ such that: for every $\mathbf{p}' = (p'_1, 1)$, $\mathbf{p}' \neq \mathbf{p}$, and $\|\mathbf{p}' - \mathbf{p}\| < \epsilon$, we have

< ロ > < 同 > < 回 > < 回 >

Local Uniqueness of WE: Two Goods II

Proof Suppose, $\mathbf{p} = (p_1, 1)$ is an equilibrium price vector, i.e.,

$$z(p) = 0, i.e., z_1(p) = 0.$$

Now, consider an infinitesimal change in **p**, say $d\mathbf{p} \neq \mathbf{0}$. Let $d\mathbf{p} = (dp_1, 0)$, $dp_1 < \epsilon$ and

$$p' = p + dp = (p_1 + dp_1, 1)$$

Since $\mathbf{p} = (p_1, 1)$ is **regular**, we have $z'_1(\mathbf{p}) \neq 0$. Therefore,

 $dp_1 z'_1(\mathbf{p}) \neq 0.$

Using Taylor series approximation, we can write

$$z_1(\mathbf{p}') \approx z_1(\mathbf{p}) + dp_1 z_1'(\mathbf{p}) \neq 0.$$

Therefore,

$$egin{array}{rll} z_1(\mathbf{p}') &
eq & 0, i.e., \ \mathbf{z}(\mathbf{p}') &
eq & \mathbf{0}. \end{array}$$

That is, **p**' is not WE.

Ram Singh: (DSE)

Number of a WE: Two goods I

Let

$$\mathbb{E} = \{ \mathbf{p} | \mathbf{p} \in \mathbb{P}, \text{ and } \mathbf{z}(\mathbf{p}) = \mathbf{0} \}.$$

Note: $\mathbb{E} \subset \subset \mathbb{P} \subseteq \mathbb{R}^{M}_{++}$.

Remark

If an economy is regular, the set $\ensuremath{\mathbb{E}}$ is discrete.

Proposition

When 'Boundary conditions' on z(P) hold, \mathbb{E} is bounded.

Proof: Suppose, $\mathbf{p}^* = (p_1^*, 1) \in \mathbb{E}$ is a equilibrium price vector, i.e., $\mathbf{z}(\mathbf{p}^*) = \mathbf{0}$.

For a two goods Economy: Boundary conditions on z(.) imply that

- z₁(.) > 0 for very small p₁
- z₁(.) < 0 for very high p₁

Number of a WE: Two goods II

- Therefore, p_1^* is finite and bounded away from 0 and ∞
- That is, **p*** is finite and bounded away from **0**

Therefore, the set \mathbb{E} is bounded.

Proposition

Assuming that z is continuous in p, \mathbb{E} is compact - bounded and closed.

Hint: Consider a sequence of prices in \mathbb{E} .

- the sequence is bounded
- it has a convergent sub-sequence From Bolzano-Weierstrass Theorem, Every bounded sequence in Rⁿ has a convergent subsequence.
- Let-p-be the limit of the subsequence
- Since **z** is continuous $\mathbf{z}(\mathbf{p}) = \mathbf{0}$, so $\mathbf{p} \in \mathbb{E}$
- So, E is closed.

Number of a WE: Two goods III

Next, we use the following result:

Theorem

If a set is compact and discrete, then it has to be finite.

Theorem

If an economy is regular, there are only finitely many equilibrium prices.

Since ${\mathbb E}$ is bounded, closed and discrete, it is a finite set.

Theorem

If an economy is regular and the 'boundary conditions' on $\mathbf{z}(\mathbf{P})$ hold, then

- Either there will be a unique equilibrium
- The number of equilibria will be odd.

Local Uniqueness of WE: M Goods I

Define the $M - 1 \times M - 1$ matrix of first order derivatives:

$$D\mathbf{z}_{\mathcal{N}M}(\mathbf{p}) = \begin{pmatrix} \frac{\partial z_1(\mathbf{p})}{\partial \rho_1} & \frac{\partial z_1(\mathbf{p})}{\partial \rho_2} & \cdots & \frac{\partial z_1(\mathbf{p})}{\partial \rho_{M-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial z_{M-1}(\mathbf{p})}{\partial \rho_1} & \frac{\partial z_{M-1}(\mathbf{p})}{\partial \rho_2} & \cdots & \frac{\partial z_{M-1}(\mathbf{p})}{\partial \rho_{M-1}} \end{pmatrix}$$

Definition

An equilibrium price vector $\mathbf{p} = (p_1, ..., p_{M-1}, 1)$ is **regular** if the $M - 1 \times M - 1$ matrix, $D\mathbf{z}_{\sim M}(.)$, is non-singular at $\mathbf{p} = (p_1, ..., p_{M-1}, 1)$.

Definition

An economy is regular if every **equilibrium** price vector $\mathbf{p} = (p_1, ..., p_{M-1}, 1)$ is regular.

< ロ > < 同 > < 回 > < 回 >

Local Uniqueness of WE: M Goods II

Theorem

A regular equilibrium price vector $\mathbf{p} = (p_1, ..., p_{M-1}, 1)$ is locally unique. That is, there exists an $\epsilon > 0$ such that: for every $\mathbf{p}' = (p'_1, ..., p'_{M-1}, 1)$, $\mathbf{p}' \neq \mathbf{p}$, and $\|\mathbf{p}' - \mathbf{p}\| < \epsilon$, we have

 $\mathbf{z}(\mathbf{p}') \neq \mathbf{0}.$

Proof Suppose, $\mathbf{p} = (p_1, ..., p_{M-1}, 1)$ is an equilibrium price vector, i.e.,

 $\mathbf{z}(\mathbf{p}) = \mathbf{0}.$

Now, consider an infinitesimal change in **p**, say $d\mathbf{p} \neq \mathbf{0}$. Let $d\mathbf{p} = (dp_1, ..., dp_{M-1}, \mathbf{0})$, and

$$\mathbf{p}' = \mathbf{p} + \mathbf{dp} = (p_1 + dp_1, ..., p_{M-1} + dp_{M-1}, 1)$$

Local Uniqueness of WE: M Goods III

Since, $D\mathbf{z}_{\sim M}(\mathbf{p})$ is non-singular, we have

$$D\mathbf{z}_{\sim M}(\mathbf{p})\mathbf{d}\mathbf{p}_{\sim M} = \begin{pmatrix} \frac{\partial z_{1}(\mathbf{p})}{\partial p_{1}} & \frac{\partial z_{1}(\mathbf{p})}{\partial p_{2}} & \cdots & \frac{\partial z_{1}(\mathbf{p})}{\partial p_{M-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial z_{M-1}(\mathbf{p})}{\partial p_{1}} & \frac{\partial z_{M-1}(\mathbf{p})}{\partial p_{2}} & \cdots & \frac{\partial z_{M-1}(\mathbf{p})}{\partial p_{M-1}} \end{pmatrix} \begin{pmatrix} dp_{1} \\ dp_{2} \\ \vdots \\ dp_{M-1} \end{pmatrix}$$
(1)
$$D\mathbf{z}_{\sim M}(\mathbf{p})\mathbf{d}\mathbf{p}_{\sim M} \neq \mathbf{0}. \quad \text{Why}?$$

$$\mathbf{z}_{\backsim M}(\mathbf{p}') pprox \mathbf{z}_{\backsim M}(\mathbf{p}) + D\mathbf{z}_{\backsim M}(\mathbf{p})\mathbf{dp}_{\backsim M}
eq \mathbf{0}.$$

Therefore,

$$f z_{\sim M}(f p')
eq 0, i.e., \ f z(f p')
eq 0.$$

That is, **p**' is not WE.

Ram Singh: (DSE)

Lecture 9-10 13 / 22

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

Number of a WE I

Let

$$\mathbb{E} = \{\mathbf{p} | \mathbf{p} \in \mathbb{P}, \text{ and } \mathbf{z}(\mathbf{p}) = \mathbf{0}\}.$$

Remark

Note: $\mathbb{E} \subset \subset \mathbb{P} \subseteq \mathbb{R}^{M}_{++}$. Also, if an economy is regular, the set \mathbb{E} is discrete.

Proposition

When 'Boundary conditions' on $\mathbf{z}(\mathbf{P})$ hold, \mathbb{E} is bounded.

Proof. Suppose, $\mathbf{p}^* = (p_1^*, ..., p_{M-1}^*, 1) \in \mathbb{E}$ is an equilibrium price vector, i.e., $\mathbf{z}(\mathbf{p}^*) = \mathbf{0}$.

In general, if the 'boundary conditions' hold, then there exists r > 0 such that: For all j = 1, ..., J

$$\frac{1}{r} < p_j^* < r.$$

Number of a WE II

Therefore, the set \mathbb{E} is bounded. Assuming that \mathbf{z} is continuous in \mathbf{p} , \mathbb{E} is closed. *Hint*: Consider a sequence of prices in \mathbb{E} and use continuity of \mathbf{z} . As earlier, if a set is compact and discrete, then it has to be finite.

Theorem

If an economy is regular, there are only finitely many equilibrium prices.

Since $\ensuremath{\mathbb{E}}$ is bounded, closed and discrete, it is a finite set.

Theorem

If an economy is regular and the 'boundary conditions' on $\boldsymbol{z}(\boldsymbol{P})$ hold, then

- Either there will be a unique equilibrium
- The number of equilibria will be odd.

Unique WE: Conditions? I

For an individual consumer. Let

 u(.) is a continuous, strictly increasing and strictly quasi-concave utility function

•
$$u^* = v(\mathbf{p}, I)$$
, and

- $\mathbf{x} : \mathbb{R}_{++}^{M+1} \mapsto \mathbb{R}_{+}^{M}$ be the (Marshallian) demand function generated by u(.).
- $\mathbf{x}^H : \mathbb{R}^{M+1}_{++} \mapsto \mathbb{R}^M_+$ be the associated Hicksian demand function.

•
$$\frac{\partial x_j(\mathbf{p},l)}{\partial p_k} = \frac{\partial x_j^H(\mathbf{p},u^*)}{\partial p_k} - x_k(\mathbf{p},l) \frac{\partial x_j(\mathbf{p},l)}{\partial l}$$
, i.e.,
• $\frac{\partial x_j^H(\mathbf{p},u^*)}{\partial p_k} = \frac{\partial x_j(\mathbf{p},l)}{\partial p_k} + x_k(\mathbf{p},l) \frac{\partial x_j(\mathbf{p},l)}{\partial l}$.

Unique WE: Conditions? II

We know that

$$\frac{\partial x_j^H(\mathbf{p}, u^*)}{\partial p_j} = \left(\frac{\partial x_j(\mathbf{p}, u^*)}{\partial p_j}\right)_{du=0} = \frac{\partial x_j(\mathbf{p}, l)}{\partial p_j} + x_j(\mathbf{p}, l)\frac{\partial x_j(\mathbf{p}, l)}{\partial l} < 0.$$

Let,

$$D(\mathbf{x}^{H}) = \begin{pmatrix} \frac{\partial x_{1}^{H}(\mathbf{p}, u)}{\partial p_{1}} & \cdots & \frac{\partial x_{1}^{H}(\mathbf{p}, u)}{\partial p_{M}} \\ \vdots & \cdots & \vdots \\ \frac{\partial x_{M}^{H}(\mathbf{p}, u)}{\partial p_{1}} & \cdots & \frac{\partial x_{M}^{H}(\mathbf{p}, u)}{\partial p_{M}} \end{pmatrix} = \begin{pmatrix} \frac{\partial^{2} E(\mathbf{p}, u)}{\partial p_{1}^{2}} & \cdots & \frac{\partial^{2} E(\mathbf{p}, u)}{\partial p_{M} \partial p_{1}} \\ \vdots & \cdots & \vdots \\ \frac{\partial^{2} E(\mathbf{p}, u)}{\partial p_{1} \partial p_{M}} & \cdots & \frac{\partial^{2} E(\mathbf{p}, u)}{\partial p_{M}^{2}} \end{pmatrix}$$

We can write

$$D(\mathbf{x}^{H}) = \begin{pmatrix} \frac{\partial x_{1}(\mathbf{p},l)}{\partial p_{1}} + x_{1}(\mathbf{p},l) \frac{\partial x_{1}(\mathbf{p},l)}{\partial l} & \cdots & \frac{\partial x_{1}(\mathbf{p},l)}{\partial p_{M}} + x_{M}(\mathbf{p},l) \frac{\partial x_{1}(\mathbf{p},l)}{\partial l} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_{M}(\mathbf{p},l)}{\partial p_{1}} + x_{1}(\mathbf{p},l) \frac{\partial x_{M}(\mathbf{p},l)}{\partial l} & \cdots & \frac{\partial x_{M}(\mathbf{p},l)}{\partial p_{M}} + x_{M}(\mathbf{p},l) \frac{\partial x_{M}(\mathbf{p},l)}{\partial l} \end{pmatrix}$$

Ram Singh: (DSE)

General Equilibrium Analysis

Lecture 9-10 17 / 22

Unique WE: Conditions? III

We know that

- Matrix $D(\mathbf{x}^{H})$ is negative semi-definite. Why?
- Moreover, for every pair (p, *I*), there is unique 'equilibrium' for the consumer. Why

Theorem

If $\mathbf{x} : \mathbb{R}^{M+1}_{++} \mapsto \mathbb{R}^{M}_{+}$, is a demand function generated by a continuous, strictly increasing and strictly quasi-concave utility function, **then** \mathbf{x} satisfies

- budget balancedness,
- symmetry and
- negative semi-definiteness.

< ロ > < 同 > < 回 > < 回 >

Unique WE: Conditions? IV

Theorem

If a function, **x**, satisfies budget balancedness, symmetry and negative semi-definiteness, then it is a demand function $\mathbf{x} : \mathbb{R}^{M+1}_{++} \mapsto \mathbb{R}^{M}_{+}$

 generated by some continuous, strictly increasing and strictly quasi-concave utility function.

That is, if matrix

$$D\{\mathbf{x}\} = \begin{pmatrix} \frac{\partial x_1(\mathbf{p},l)}{\partial p_1} + x_1(\mathbf{p},l) \frac{\partial x_1(\mathbf{p},l)}{\partial l} & \cdots & \frac{\partial x_1(\mathbf{p},l)}{\partial p_M} + x_M(\mathbf{p},l) \frac{\partial x_1(\mathbf{p},l)}{\partial l} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_M(\mathbf{p},l)}{\partial p_1} + x_1(\mathbf{p},l) \frac{\partial x_M(\mathbf{p},l)}{\partial l} & \cdots & \frac{\partial x_M(\mathbf{p},l)}{\partial p_M} + x_M(\mathbf{p},l) \frac{\partial x_M(\mathbf{p},l)}{\partial l} \end{pmatrix}$$

is symmetric and negative semi-definite, then

A B F A B F

A D b 4 A b

Unique WE: Conditions? V

- There is a continuous, strictly increasing and strictly quasi-concave utility function u(.) that induces demand function x.
- The 'equilibrium of the consumer' is unique.
- Moreover, if good *j* is normal, then $\frac{\partial x_j(\mathbf{p})}{\partial p_i} < 0$.

Question

Does a similar result hold for the aggregate demand function? That is, does a similar result hold at the aggregate level?

Let

$$D\{\mathbf{z}(\mathbf{p})\} = \left\{\frac{\partial z_j(\mathbf{p})}{\partial p_k}\right\}, \ j, k = 1, ..., J - 1.$$

At aggregate level, we have:

A B F A B F

Unique WE: Conditions? VI

Theorem

WE is unique, if the matrix

- $D{z(.)}$ is negative semi-definite at all $p \in \mathbb{E}$, i.e.,
- $D\{-z(.)\}$ has a positive determinant at all $p \in \mathbb{E}$.

Note, now Slutsky equation is:

$$\left(\frac{\partial x_j^i(\mathbf{p}^*)}{\partial p_k}\right)_{du^i=0} = \frac{\partial x_j^i(\mathbf{p}^*)}{\partial p_k} + \left(x_k^i(\mathbf{p}^*) - e_k^i\right) \left(\frac{\partial x_j^i(\mathbf{p}^*)}{\partial I}\right)_{dp=0}$$

We have seen that even for 2×2 economy,

Lecture 9-10 21 / 22

Unique WE: Conditions? VII

Remark

- D{z(.)} is not necessarily negative semi-definite, even if D(x^H) is negative semi-definite.
- Moreover, even if the goods are all normal, $\frac{\partial Z_j(\mathbf{p})}{\partial p_i} < 0$ may not hold.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))