General Equilibrium with Production

Ram Singh

Microeconomic Theory

Lecture 11

Ram Singh: (DSE)

General Equilibrium: Production

Lecture 11 1 / 24

A

Producer Firms I

- There are *N* individuals; i = 1, ..., N
- There are *M* goods; *j* = 1, ..., *M*
- There are K firms; k = 1, ..., K
- Each firm has a set of production plans, i.e., production set $\mathbb{Y}^k \subset \mathbb{R}^M$
- The production set \mathbb{Y}^k is the set of feasible production plans for firm k

Examples: Let M = 3 and K = 2. Suppose Firm 1 can produce six units of good 2 by using three units of good 1 and nine units of good 3, i.e.,

Firm 1:
$$\mathbf{y}^1 = (-3, 6, -9)$$

Firm 2: $\mathbf{y}^2 = (8, -3\frac{1}{2}, -14)$
Economy: $\mathbf{Y} = (5, 2\frac{1}{2}, -23)$

General Equilibrium: Production

4 D K 4 B K 4 B K 4 B K

Producer Firms II

A typical production plan for firm k is

$$\mathbf{y}^k = (y_1^k, ..., y_M^k),$$

where

•
$$y_i^k > 0$$
 if good *j* is an output produced by firm *k*

• $y_i^k < 0$ if good *j* is an input used by firm *k*.

Let $\mathbf{p} = (p_1, ..., p_M)$ be the given price vector. For any $\mathbf{y}^k \in \mathbb{Y}^k$, profit for firm k is

$$\pi(\mathbf{p},\mathbf{y}^k) = \boldsymbol{\rho}_1 \boldsymbol{y}_1^k + \ldots + \boldsymbol{\rho}_M \boldsymbol{y}_M^k = \mathbf{p}.\mathbf{y}^k.$$

So, PMP for firm *k* is:

$$\max_{\mathbf{y}^k \in \mathbb{Y}^k} \{ p_1 \mathbf{y}_1^k + \ldots + p_M \mathbf{y}_M^k \}, i.e.,$$

 $\max_{\mathbf{y}^k \in \mathbb{Y}^k} \{\mathbf{p}.\mathbf{y}^k\}$

A D N A B N A B N

Producer Firms III

Let

$$\Pi^k(\mathbf{p}) = \max_{\mathbf{y}^k \in \mathbb{Y}^k} \pi(\mathbf{p}, \mathbf{y}^k)$$

 $\Pi^{k}(\mathbf{p})$ homogenous function of degree 1 in **p**.

Assume, for each firm *k*,

- $\mathbf{0} \in \mathbb{Y}^k \subset \mathbb{R}^M$, i.e., firm can always earn Zero profit
- So, profit is non-negative
- \mathbb{Y}^k is closed and bounded and strictly convex
 - For any given price vector **p**, the profit maximizing choice/production plan is unique
 - For different price vector **p**', profit maximizing choice/production plan will be different, in general.

Aggregate Production Plans I

Let

- $\mathbf{y}^k = (y_1^k, ..., y_M^k)$ be a feasible production plan for firm k = 1, ..., K.
- Corresponding to the above production plan, the aggregate production plan for the economy is given by

$$\mathbf{Y} = (\mathbf{y}^1, ..., \mathbf{y}^K), \text{ where } \mathbf{y}^k = (y_1^k, ..., y_M^k).$$
 (1)

Corresponding to the production plan (1), the total production of good j is given by

$$\sum_{k=1}^{K} y_j^k$$

So, corresponding to the production plan (1), the total 'output' vector is:

$$\left(\sum_{k=1}^{K} y_{1}^{k}, ..., \sum_{k=1}^{K} y_{M}^{k}\right) = \sum_{k=1}^{K} \mathbf{y}^{k} = \mathbf{Y}$$

General Equilibrium: Production

Aggregate Production Plans II

- if $\sum_{k=1}^{K} y_j^k > 0$, good *j* is a net output for the economy
- if $\sum_{k=1}^{K} y_j^k < 0$, good *j* is a net input for the economy.

The aggregate production possibility set (for the entire economy) is

$$\mathbb{Y} = \left\{ \mathbf{Y} \mid \mathbf{Y} = \sum_{k=1}^{K} \mathbf{y}^{k}, \text{ where } \mathbf{y}^{k} \in \mathbb{Y}^{k}
ight\}.$$

That is, if $\hat{\mathbf{Y}} \in \mathbb{Y}$, then there exist production plans $\hat{\mathbf{y}}^1, ..., \hat{\mathbf{y}}^k, ..., \hat{\mathbf{y}}^k$ such that

• $\hat{\mathbf{y}}^k \in \hat{\mathbb{Y}}^k$, i.e., $\hat{\mathbf{y}}^k$ is a feasible plan for firm k = 1, ..., K; and • $\hat{\mathbf{Y}} = \sum_{k=1}^{K} \hat{\mathbf{y}}^k$

イロト 不得 トイヨト イヨト ヨー ろくの

Aggregate Production Plans III

Proposition

Given the above assumptions on \mathbb{Y}^k and PMP for firms,

- $\mathbf{0} \in \mathbb{Y} \subset \mathbb{R}^M$
- Y is closed and bounded and strictly convex

Question

Why \mathbb{Y} is a bounded set?

Proposition

Given the above assumptions on \mathbb{Y}^k , for any given price vector $\mathbf{p} = (p_1, ..., p_M) >> (0, ..., 0)$, the following PMP has a unique solution:

$$\max_{\mathbf{y}^k \in \mathbb{Y}^k} \{\mathbf{p}.\mathbf{y}^k\} \text{ for every } k=1,...,K$$

< ロ > < 同 > < 回 > < 回 >

Aggregate Production Plans IV

Proposition

Given the above assumptions on \mathbb{Y} , for any given price vector $\mathbf{p} = (p_1, ..., p_M) >> (0, ..., 0)$, the following PMP has a unique solution:

 $\max_{\textbf{Y} \in \mathbb{Y}} \{\textbf{p}.\textbf{Y}\}$

Ram Singh: (DSE)

General Equilibrium: Production

Lecture 11 8 / 24

Efficient Production: Two definitions I

Definition

(Definition 1): Production Plan $\mathbf{Y} = (\mathbf{y}^1, ..., \mathbf{y}^K) \in \mathbb{Y}$ is 'efficient' if there is no other plan $\mathbf{Z} = (\mathbf{z}^1, ..., \mathbf{z}^K)$ such that: \mathbf{Z} is feasible, i.e., $\mathbf{Z} \in \mathbb{Y}$, and

$$\sum_{k=1}^{K} z_j^k \geq \sum_{k=1}^{K} y_j^k$$
, for all goods j
 $\sum_{k=1}^{K} z_j^k > \sum_{k=1}^{K} y_j^k$, for at least one good.

Remark

Suppose *k*th good is a net input. In that case, $\sum_{k=1}^{K} z_j^k > \sum_{k=1}^{K} y_j^k$ implies that the production plan requires smaller quantity of this input.

4 D K 4 B K 4 B K 4 B K

Efficient Production: Two definitions II

Suppose $\mathbf{Y} = (\mathbf{y}^1, \mathbf{y}^2)$:

firm 1:
$$\mathbf{y}^1 = (-2, 4, -6)$$

firm 2: $\mathbf{y}^2 = (8, -4, -14)$
So, $\mathbf{Y} = \sum_{1}^{2} \mathbf{y}^{i} = (\sum_{1}^{2} y_{1}, \sum_{1}^{2} y_{2}, \sum_{1}^{2} y_{3}) = (6, 0, -20)$

Let $Z = (z^1, z^2)$:

firm 1:
$$\mathbf{z}^1 = (-2, 4, -6)$$

firm 2: $\mathbf{z}^2 = (8, -3\frac{1}{2}, -14)$

So, $\mathbf{Z} = \sum_{1}^{2} \mathbf{z}^{i} = (\sum_{1}^{2} z_{1}, \sum_{1}^{2} z_{2}, \sum_{1}^{2} z_{3}) = (6, \frac{1}{2}, -20)$

Efficient Production: Two definitions III

Definition

(Definition 2): For given price vector $\mathbf{p} = (p_1, ..., p_M)$, production Plan $\mathbf{Y} = (\mathbf{y}^1, ..., \mathbf{y}^K) \in \mathbb{Y}$ is efficient if it solves

 $\max_{\mathbf{Y}' \in \mathbb{Y}} \{\mathbf{p}.\mathbf{Y}'\}, i.e.,$

 $\textbf{p}.\textbf{Y} \geq \textbf{p}.\textbf{Y}' \ \ \text{for all } \textbf{Y}' \in \mathbb{Y}$

Question

Does (D1) imply (D2)? Does (D2) imply (D1)?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Production Equilibrium I

Total supply is given by

$$\sum_{i=1}^{N} \mathbf{e}^{i} + \sum_{k=1}^{K} \mathbf{y}^{k}$$

Let

•
$$\mathbf{\bar{p}} = (\mathbf{\bar{p}}_1, ..., \mathbf{\bar{p}}_M)$$
 be a price vector.

• $\bar{\mathbf{Y}} = (\bar{\mathbf{y}}^1, ..., \bar{\mathbf{y}}^K)$ be a production plan for the economy.

Definition

 $(\bar{\mathbf{Y}}, \bar{\mathbf{p}})$ is a competitive 'production' equilibrium only if: For all k = 1, ..., K,

$$\bar{\mathbf{y}}^k$$
 solves $\max_{\mathbf{y}^k \in \mathbb{Y}^k} \{ \bar{\mathbf{p}} . \mathbf{y}^k \}.$

< ロ > < 同 > < 回 > < 回 >

Production Equilibrium II

Proposition

Take any price vector $\mathbf{\bar{p}} = (\bar{p}_1, ..., \bar{p}_M)$. If $\mathbf{\bar{y}}^k \in \mathbb{Y}^k$ solves

$$\max_{\mathbf{y}^k \in \mathbb{Y}^k} \{ \mathbf{\bar{p}}. \mathbf{y}^k \} \text{ for } k = 1, ..., K.$$

Let $\bar{\mathbf{Y}}$, where $\bar{\mathbf{Y}} = \sum_{k=1}^{K} \bar{\mathbf{y}}^k$. Then, there is NO other plan $\mathbf{Z} = (\mathbf{z}^1, ..., \mathbf{z}^K)$ such that: \mathbf{Z} is feasible, i.e., $\mathbf{Z} \in \mathbb{Y}$, and

$$\begin{array}{lll} \sum\limits_{k=1}^{K} z_{j}^{k} & \geq & \sum\limits_{k=1}^{K} \bar{y}_{j}^{k}, \text{ for all goods } j \\ \sum\limits_{k=1}^{K} z_{j}^{k} & > & \sum\limits_{k=1}^{K} \bar{y}_{j}^{k}, \text{ for at least one good } j \end{array}$$

Production Equilibrium III

Proposition

Take any price vector $\bar{\mathbf{p}} = (\bar{p}_1, ..., \bar{p}_M)$. Suppose production plans $\bar{\mathbf{y}}^1, ..., \bar{\mathbf{y}}^K$ are such that $\bar{\mathbf{y}}^k \in Y^k$ solves

$$\max_{\mathbf{y}^k \in \mathbb{Y}^k} \{ \mathbf{\bar{p}}. \mathbf{y}^k \} \text{ for all } k = 1, ..., K$$

Then,
$$\bar{\mathbf{Y}} = \sum_{k=1}^{K} \bar{\mathbf{y}}^k$$
 solves
$$\max_{\mathbf{Y} \in \mathbb{Y}} \{ \bar{\mathbf{p}}. \mathbf{Y} \}$$

That is, individual profit maximization leads to total profit maximization. Why?

Question

What assumption is made about Externality?

Production Equilibrium IV

Proposition

Take any price vector $\mathbf{\bar{p}} = (\bar{p}_1, ..., \bar{p}_M)$. If $\mathbf{\bar{Y}}$ solves

 $\max_{\textbf{Y} \in \mathbb{Y}} \{ \bar{\textbf{p}}.\textbf{Y} \}$

then there exist production plans $\bar{\mathbf{y}}^1, ..., \bar{\mathbf{y}}^K$ such that $\bar{\mathbf{y}}^k \in Y^k$, $\bar{\mathbf{Y}} = \sum_{k=1}^K \bar{\mathbf{y}}^k$, and $\bar{\mathbf{y}}^k$ solves

$$\max_{\mathbf{y}^k \in \mathbb{Y}^k} \{ \mathbf{\bar{p}}. \mathbf{y}^k \} \text{ for all } k = 1, ..., K$$

Proof: Let $\overline{\mathbf{Y}}$ solve max_{$\mathbf{Y} \in \mathbb{Y}$}{ $\overline{\mathbf{p}}$. \mathbf{Y} }. That is,

$$(\forall \mathbf{y} \in \mathbb{Y})[\mathbf{\bar{p}}.\mathbf{\bar{Y}} \geq \mathbf{\bar{p}}.\mathbf{Y}]$$

Let $\bar{\mathbf{y}}^1, ..., \bar{\mathbf{y}}^K$ are such that $\bar{\mathbf{y}} = \sum_{k=1}^K \bar{\mathbf{y}}^k$ and $\bar{\mathbf{y}}^k \in \mathbb{Y}^k$. If possible, suppose for some $k, \bar{\mathbf{y}}^k$ does not solve

$$\max_{\mathbf{y}^k \in \mathbb{Y}^k} \{ \mathbf{\bar{p}} . \mathbf{y}^k \}$$

Production Equilibrium V

So, there exists some $\hat{\mathbf{y}}^k \in \mathbb{Y}^k$ such that

 $\bar{\mathbf{p}}.\hat{\mathbf{y}}^k > \bar{\mathbf{p}}.\bar{\mathbf{y}}^k$

Now, consider the production plan Z such that

$$Z = (z^1, ..., z^k, ..., z^K) = (\bar{y}^1, ..., \hat{y}^k, ..., \bar{y}^K)$$

Clearly, $\mathbf{Z} \in \mathbb{Y}$. It is easy to show that

$$\bar{p}.Z > \bar{p}.\bar{Y},$$

a contradiction.

• • • • • • • • • • • •

Privatized Economy I

Privatized Economy: $(u^{i}(.), e^{i}(.), \mathbb{Y}^{k}, \theta^{ik})_{i \in \{1,...,N\}, j \in \{1,...,M\}, k \in \{1,...,K\}}$

- All firms are privately owned
- θ^{ik} is the (ownership) share of *k*th firm owned by *i* the individual;

•
$$0 \le \theta^{ik} \le 1$$
 for all $i = 1, ..., N$ and $k = 1, ..., K$

•
$$\sum_{i=1}^{n} \theta^{ik} = 1$$
 for all $k = 1, ..., K$

Now, for any given price vector, $\mathbf{p} = (p_1, ..., p_M)$, individual *i* solves

$$\max_{\mathbf{x}^i \in R^M_+} u^i(\mathbf{x}), \text{ s.t. } \mathbf{p}.\mathbf{x}^i \leq l^i(\mathbf{p}),$$

where

$$I^{i}(\mathbf{p}) = \mathbf{p}.\mathbf{e}^{i} + \sum_{k=1}^{K} \theta^{ik} \pi^{k}(\mathbf{p}).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Privatized Economy II

Remark

In view of the above assumptions on Production sets,

- $\pi(\mathbf{p}) \ge 0$ is bounded above and continuous in \mathbf{p} .
- Moreover, lⁱ(**p**) is a continuous function of **p**
- In view of the assumption on uⁱ(.), the solution of the above UMP is unique.

Definition

The excess demand function for good *j* is

$$z_j(\mathbf{p}) = \sum_{i=1}^N x_j^i(\mathbf{p}, I^i(\mathbf{p})) - \sum_{k=1}^K y_j^k(\mathbf{p}) - \sum_{i=1}^N e_j^i.$$

So, excess demand vector is $\mathbf{z}(\mathbf{p}) = (z_1(\mathbf{p}), ..., z_M(\mathbf{p})).$

Privatized Economy III

Definition

Feasible Allocation: An allocation (\mathbf{X}, \mathbf{Y}) , where $\mathbf{Y} = (\mathbf{y}^1, ..., \mathbf{y}^K)$ is feasible, if:

• For all
$$k, \mathbf{y}^k \in \mathbb{Y}^k$$

۲

$$\sum_{i=1}^{N} \mathbf{x}^{i} = \sum_{i=1}^{N} \mathbf{e}^{i} + \sum_{k=1}^{K} \mathbf{y}^{k}.$$

As before, in view of the assumption on $u^i(.)$ and \mathbb{Y}^k ,

- the excess demand function is homogeneous function of **p** of degree 0.
- For equilibrium to exist $\mathbf{Y} + \sum_{i=1}^{N} \mathbf{e}^{i} >> \mathbf{0}$ must hold for some $\mathbf{Y} \in \mathbb{Y}$.
- As p_j → 0 for some j, the excess demand becomes unbounded for one of such commodities.

Theorem

Consider an economy $(u^{i}(.), \mathbf{e}^{i}, \theta^{ik}, Y^{j})$, where i = 1, ..., N, j = 1, ..., M and k = 1, ..., K. If $u^{i}(.)$ and Y^{j} satisfy above assumptions, then there exists a price vector $\mathbf{p}^{*} >> \mathbf{0}$ such that $\mathbf{z}(\mathbf{p}^{*}) = \mathbf{0}$.

Efficiency of WE I

Definition

A feasible allocation (\bar{X},\bar{Y}) is Pareto optimum if there is no other allocation (X,Y) such that

$$\sum_{i=1}^{N} \mathbf{x}^{i} = \sum_{i=1}^{N} \mathbf{e}^{i} + \sum_{k=1}^{K} \mathbf{y}^{k};$$

$$u^{i}(\mathbf{x}^{i}) \geq u^{i}(\bar{\mathbf{x}}) \text{ for all } i \in \{1, ..., N\} \text{ and }$$

$$u^{j}(\mathbf{x}^{j}) > u^{j}(\bar{\mathbf{x}}) \text{ for some } j \in \{1, ..., N\}$$

Theorem

Consider an economy $(u^i(.), \mathbf{e}^i, \theta^{ik}, \mathbf{y}^k)$, where i = 1, ..., N and k = 1, ..., K. If $u^i(.)$ is strictly increasing, then every WE is Pareto optimum.

Proof: Suppose $(\bar{\mathbf{X}}, \bar{\mathbf{Y}})$ along with \mathbf{p}^* is WE. Therefore,

Efficiency of WE II

$$\sum_{i=1}^{N} ar{\mathbf{x}}^i = \sum_{i=1}^{N} \mathbf{e}^i + \sum_{k=1}^{K} ar{\mathbf{y}}^k$$

Suppose $(\bar{\mathbf{X}}, \bar{\mathbf{Y}})$ is not PO. So, there is some (\mathbf{X}, \mathbf{Y}) , such that

$$\sum_{i=1}^{N} \mathbf{x}^{i} = \sum_{i=1}^{N} \mathbf{e}^{i} + \sum_{k=1}^{K} \mathbf{y}^{k};$$

$$u^{i}(\mathbf{x}^{i}) \geq u^{i}(\bar{\mathbf{x}}^{i}) \text{ for all } i \in \{1, ..., N\} \text{ and}$$

$$u^{j}(\mathbf{x}^{i}) > u^{j}(\bar{\mathbf{x}}^{j}) \text{ for some } j \in \{1, ..., N\}$$

Therefore,

$$\begin{array}{lll} \mathbf{p}^*.\mathbf{x}^i & \geq & \mathbf{p}^*.\bar{\mathbf{x}}^i \text{ for all } i \in \{1,...,N\} \text{ and} \\ \mathbf{p}^*.\mathbf{x}^i & > & \mathbf{p}^*.\bar{\mathbf{x}}^i \text{ for some } j \in \{1,...,N\}_{\text{prod}}, \end{array}$$

Ram Singh: (DSE)

General Equilibrium: Production

Lecture 11 22 / 24

Efficiency of WE III

a contradiction. Why?

Lecture 11 23 / 24

Efficiency of WE IV

Theorem

Consider an economy $(u^i(.), \mathbf{e}^i, \theta^{ik}, Y^j)$, where i = 1, ..., N and k = 1, ..., K. Suppose, $u^i(.)$ and Y^j satisfy above assumptions, and $\mathbf{y} + \sum_{i=1}^{N} \mathbf{e}^i >> \mathbf{0}$ for some $\mathbf{y} \in \mathbb{Y}$. If $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ is any feasible PO allocation, then there exist

• 'Cash' transfers T^i , i = 1, ..., N such that $\sum_{i=1}^{N} T^i = 0$

• A price vector
$$\bar{\mathbf{p}} = (\bar{p}_1, ..., \bar{p}_M)$$

such that

• $\mathbf{\bar{x}}^i$ maximizes $u^i(\mathbf{x}^i)$ s.t. $\mathbf{\bar{p}}.\mathbf{x}^i \leq \mathbf{\bar{p}}.\mathbf{e}^i + \sum_{k=1}^{K} \theta^{ik} \pi^k(\mathbf{\bar{p}}) + T^i$ for all i = 1, ..., N

2
$$\bar{\mathbf{y}}^k$$
 maximizes $\bar{\mathbf{p}}$. \mathbf{y}^k for all $k = 1, ..., K$

3
$$z^{j}(\bar{p}) = 0$$
 for all $j = 1, ..., M$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >