Market Outcomes: Efficient or Fair?

Ram Singh

Microeconomic Theory

Lecture 14

Ram Singh: (DSE)

Market Equilibrium

Lecture 14 1/16

< 6 b

H 5

Fair Versus Efficient

Question

- What is a fair allocation?
 - Is a 'fair' allocation also an efficient allocation?
- Is a 'fair' allocation Pareto efficient?
- Oan an allocation be fair as well as efficient?
- Output the second se
- 6 How to choose from the set of efficient alternatives?

Fairness: Two Definitions

Consider a $N \times M$ pure exchange economy. Let,

- \mathbb{N} be the set of individuals.
- $(\mathbf{e}^1, ..., \mathbf{e}^N)$ be the vector of initial endowments.

Definition

Allocation $\mathbf{x} = (\mathbf{x}^1, ..., \mathbf{x}^N)$ is 'fair' if it is equal division of endowments, i.e., if

$$(\forall i, j \in \mathbb{N}) \left[\mathbf{x}^{i} = \mathbf{x}^{j} = \frac{\sum_{i=1}^{N} \mathbf{e}^{i}}{N} \right]$$

Definition

Allocation $\mathbf{x} = (\mathbf{x}^1, ..., \mathbf{x}^N)$ is 'fair' if it is Non-envious/envy-free. That is, if

$$(\forall i, j \in \mathbb{N}) [\mathbf{x}^i \quad R_i \quad \mathbf{x}^j], \ i.e., \\ (\forall i, j \in \mathbb{N}) [u^i(\mathbf{x}^i) \geq u^i(\mathbf{x}^j)].$$

Fair Vs Pareto Efficient

Question

- Are the above definitions equivalent to each other?
- Is an 'Equal division' allocation 'Non-envious' ?
- Is a Non-envious allocation also an Equal division allocation?
- Is an 'Equal division' allocation Pareto efficient?
- Is a Non-envious allocation Pareto efficient?
- Between a Non-envious allocation and a Pareto efficient allocation, which one is socially desirable?

Fair and Efficient I

Question

Is fair (equal) division of endowments a P.O allocation?

Consider a 2×2 pure exchange economy:

• The goods are; x and y.

•
$$u^1(.) = x^{\alpha}.y^{1-\alpha}$$
 and $u^2(.) = x^{\beta}.y^{1-\beta}$, and $\alpha = \beta = \frac{1}{2}$

• the total initial endowment vector is $(\bar{x}, \bar{y}) >> (0, 0)$.

Let

- x_1 and x_2 denote the amounts of good x allocated to individuals 1 and 2, resp. Let $x_1 = x_2 = \frac{\bar{x}}{2}$
- y_1 and y_2 denote the amounts of good y allocated to individuals 1 and 2, resp. Let $y_1 = y_2 = \frac{\bar{y}}{2}$

Fair and Efficient II

Clearly

$$MRS^{1} = \frac{y_{1}}{x_{1}}$$
$$MRS^{2} = \frac{y_{2}}{x_{2}} = \frac{\overline{y} - y_{1}}{\overline{x} - x_{1}}$$

So the set of PO allocations is solution to

$$\frac{y_1}{x_1} = \frac{y_2}{x_2} = \frac{\bar{y} - y_1}{\bar{x} - x_1}$$

But,

$$\left(\frac{y_1}{x_1} = \frac{\bar{y} - y_1}{\bar{x} - x_1}\right) \Rightarrow \left(\frac{y_1}{x_1} = \frac{\bar{y}}{\bar{x}}\right)$$

Fair But Not Efficient

Consider a 3 \times 3 exchange economy. Let

•
$$u^{1}(x, y, z) = 3x_{1} + 2y_{1} + z_{1}$$

• $u^{2}(x, y, z) = 2x_{2} + y_{2} + 3z_{2}$
• $u^{3}(x, y, z) = x_{1} + 3y_{1} + 2z_{1}$
• $\mathbf{e}^{1} = \mathbf{e}^{2} = \mathbf{e}^{3} = (1, 1, 1)$. So, $u^{1}(\mathbf{e}^{1}) = u^{2}(\mathbf{e}^{2}) = u^{3}(\mathbf{e}^{3}) = 6$.

Consider an allocation $\mathbf{y} = (\mathbf{y}^1, \mathbf{y}^2, \mathbf{y}^3)$, where

$$\bm{y}^1=(3,\frac{2}{3},0),/\bm{y}^2=(0,0,2),\ \, \bm{y}^3=(0,\frac{7}{3},1).$$

• $\mathbf{y} = (\mathbf{y}^1, \mathbf{y}^2, \mathbf{y}^3)$ is Pareto efficient.

- However, $u^1(y^1) = 31/3$, $u^2(y^2) = 6$ and $u^3(y^3) = 9$,
- So, $\mathbf{y} = (\mathbf{y}^1, \mathbf{y}^2, \mathbf{y}^3)$ is efficient but not fair on this criterion.

Fairness under Markets I

Proposition

When preferences are strongly monotonic and initial allocation is 'Equal', the competitive equilibrium is fair (Envy-free)

Let

- $\mathbf{e}^1 = \mathbf{e}^2 = \dots = \mathbf{e}^N$ be the initial endowment vectors
- $(\mathbf{x}^{*1}, ..., \mathbf{x}^{*N})$ is a Walrasian equilibrium allocation.
- **p*** be the associated equilibrium price vector

Suppose, at $(\mathbf{x}^{*1}, ..., \mathbf{x}^{*N})$, some individual *i* envy another person *j*, i.e.,

$$(\exists i, j \in \{1, ..., n\})[u^i(\mathbf{x}^{*^i}) < u^i(\mathbf{x}^{*^j})].$$

Note: $(\mathbf{x}^{*1}, ..., \mathbf{x}^{*N})$ is a WE implies that

person i can afford and demands x^{*i}

Fairness under Markets II

- person j can afford and demands x^{*j}
- but, purchasing power of i is the same as that of j
- so, person i can afford more preferred bundle x^{*j}

This means that $(\mathbf{x}^{*1}, ..., \mathbf{x}^{*N})$ cannot be a WEA, a contradiction. So, under a WE the following holds.

$$(\forall i, j \in \{1, ..., n\})[u^i(\mathbf{x}^{*i}) \ge u^i(\mathbf{x}^{*j})].$$

Pareto Criterion I

Let

- \mathbb{N} be the set of individuals.
- S be the set of feasible alternatives.
- u^i utility fn for *i* the individual
- $\bm{x} = (\bm{x}^1,...,\bm{x}^{\mathcal{N}}) \in \mathbb{S}$ be an arbitrary allocation in \mathbb{S}
- $\bullet \ \mathbb{U}$ be the set of possible utilities

$$\mathbb{U} = \{(\boldsymbol{u}^{1}(\boldsymbol{x}^{1}),...,\boldsymbol{u}^{N}(\boldsymbol{x}^{N})) | \boldsymbol{x} = (\boldsymbol{x}^{1},...,\boldsymbol{x}^{N}) \in \mathbb{S}\}$$

A (1) > A (2) > A

Pareto Criterion II

Definition

Take any $\mathbf{x} = (\mathbf{x}^1, ..., \mathbf{x}^N)$, and $\mathbf{y} = (\mathbf{y}^1, ..., \mathbf{y}^N)$, $\mathbf{x}, \mathbf{y} \in \mathbb{S}$. Suppose \mathbf{x} is 'Pareto as goods as' \mathbf{y} , i.e., $\mathbf{x}\mathcal{R}\mathbf{y}$ if

 $(\forall i \in \mathbb{N})[\mathbf{x}R_i\mathbf{y}]$

Definition

x is Pareto superior to **y**, i.e., $\mathbf{x}\mathcal{P}\mathbf{y}$: if $\mathbf{x}\mathcal{R}\mathbf{y}$ but $\sim \mathbf{y}\mathcal{R}\mathbf{x}$. That is,

 $(\forall i \in \mathbb{N})[\mathbf{x}R_i\mathbf{y}]$ $(\exists j \in \mathbb{N})[\sim \mathbf{y}R_j\mathbf{x}]$

- As a preference relation, is 'Pareto-superior' a complete relation?
- As a preference relation, is 'Pareto-as good as' a complete relation?

Ram Singh: (DSE)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rawls Criterion: Egalitarian World I

Consider

x = (50, 100, 150) , *i.e.*,
$$\sum_{i=1}^{3} x^{i} = 300$$

y = (90, 90, 90) , *i.e.*, $\sum_{i=1}^{3} y^{i} = 270$
z = (80, 250, 250) , *i.e.*, $\sum_{i=1}^{3} z^{i} = 580$

- Which of the above alternatives is socially desirable?
- Is an Equal division allocation Pareto Efficient?
- Is an Equal division a Rawls Best allocation?

< ロ > < 同 > < 回 > < 回 >

Rawls Criterion: Egalitarian World II

Veil of ignorance:

- Consider various possible distributions of one good, say wealth, across N individuals.
- Assume individual preferences are monotonic in the good

Distribution $\mathbf{x} = (x^1, ..., x^N)$ is Rawls superior to distribution $\mathbf{y} = (y^1, ..., y^N)$ if

$$\min_{i\in\mathbb{N}}\{x^{1},...,x^{N}\}>\min_{i\in\mathbb{N}}\{y^{1},...,y^{N}\}$$

The Difference Principle:

Proposition

Let
$$\sum_{i=1}^{N} e^{i} = C$$
. Distribution $\mathbf{x} = (x^{1}, ..., x^{N})$ is Rawls Best if

$$\{x^1, ..., x^N\} = \min\{\frac{C}{N}, ..., \frac{C}{N}\}$$

Rawls Criterion: Egalitarian World III

In general, suppose endowments are multi-dimensional, i.e., an allocation

$$\mathbf{x} = (\mathbf{x}^1, ..., \mathbf{x}^N)$$

where for i = 1, ..., N,

$$\mathbf{x}^i = (x_1^i, ..., x_M^i)$$

Definition

Distribution $\mathbf{x} = (\mathbf{x}^1, ..., \mathbf{x}^N)$ is Rawls superior to distribution $\mathbf{y} = (\mathbf{y}^1, ..., \mathbf{y}^N)$ if minimum $\{u^1(\mathbf{x}^1), ..., u^N(\mathbf{x}^N)\} > \min \{u^1(\mathbf{y}^1), ..., u^N(\mathbf{y}^N)\}$

Ram	Sina	h۰ ۱	(DSF)
	<u>e</u> g		(202)

Rawls' Criterion and Markets

Question

Suppose we start from a Rawls Best allocation as the endowment. Will competitive equilibrium allocation be egalitarian?

Proposition

When preferences are strongly monotonic and initial allocation is Rawls Best, the competitive equilibrium is non-envious and Pareto efficient.

Rawls Criterion: Limitations

In real world

- individual welfare has several components; uⁱ(xⁱ), where xⁱ has several components
- Implications for policy interventions are complex
- Individuals have different beliefs about desirability of the possible outcomes.

For example, consider *m* goods some of which are legal, economic and social entitlements.

Even under the Veil of ignorance person 1 may feel

minimum{
$$u^{1}(\mathbf{x}^{1}), ..., u^{1}(\mathbf{x}^{N}) > minimum{ $u^{1}(\mathbf{y}^{1}), ..., u^{1}(\mathbf{y}^{N})$ }$$

But, person 2 may have

 $\mathsf{minimum}\{u^2(\mathbf{x}^1),...,u^2(\mathbf{x}^N) < \mathsf{minimum}\{u^2(\mathbf{y}^1),...,u^2(\mathbf{y}^N)\}$