ECONOMICS 001 General Equilibrium Analysis (Part 1) Summer 2018-19

Instructor: Ram Singh

Problem 1

Please watch out for typos!

- 1. Consider a two-person two-goods economy. Suppose individual utility functions are: $u^i(x_1^i, x_2^i) = x_1^i \cdot x_2^i$, i = 1, 2. Let initial endowment of the first person be the vector $\mathbf{e}^1 = (1, 9)$, i.e, to start with the first person has one unit of good one and nine units of good two. Let, $\mathbf{e}^2 = (9, 1)$. Now, consider an allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$, where $\mathbf{x}^1 = (3, 3)$ and $\mathbf{x}^2 = (7, 7)$.
 - (a) Is allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$ Pareto optimum?
 - (b) Does it belong to the Core?
- 2. Let us replicate the above economy. Suppose, now there are four individuals but only two goods as above. Utility functions are: $u^i(x_1^i.x_2^i) = x_1^i.x_2^i$, i = 1, ..., 4. Let initial endowments be $\mathbf{e}^1 = (1, 9)$, $\mathbf{e}^2 = (9, 1)$, $\mathbf{e}^3 = (1, 9)$, and $\mathbf{e}^4 = (9, 1)$. That is, person 3 is a twin of person 1, and 4 is twin of person 2. Next, consider an allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \mathbf{x}^4)$, where $\mathbf{x}^1 = (3, 3) = \mathbf{x}^3$ and $\mathbf{x}^2 = (7, 7) = \mathbf{x}^4$.
 - (a) Is allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \mathbf{x}^4)$ Pareto optimum?
 - (b) Does it belong to the Core?
- 3. Consider a pure exchange economy; $(u^i(.), \mathbf{e}^i)_{i \in I}$. Suppose $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^I)$ is a feasible allocation, and $S \subseteq \{1, ..., I\}$ is a blocking coalitions for $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^I)$. Which of the following is necessarily true?
 - (a) Allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^I)$ is not Pareto optimum
 - (b) Allocation $\mathbf{e} = (\mathbf{e}^1, \mathbf{e}^2, ..., \mathbf{e}^I)$ is not Pareto optimum

Explain your answer.

- 4. Answer the above question assuming that allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^I)$ is Pareto superior to $\mathbf{e} = (\mathbf{e}^1, \mathbf{e}^2, ..., \mathbf{e}^I)$.
- 5. Consider a two-person two-goods pure exchange economy. The initial endowment vectors are $\mathbf{e}^1 = (1,0)$ and $\mathbf{e}^2 = (0,1)$. Utility function is $u^i(x,y) = x^{\alpha}y^{\beta}$ for individual i = 1, 2, where x is the quantity of the first good and y is the quantity of the second good consumed; $x, y \ge 0$. For this economy:
 - (a) Draw the core assuming $\alpha = \beta = 1$.

- (b) Draw the core assuming $\beta = 1 \alpha$ and $\alpha \in (0, 1)$.
- (c) Find out the competitive equilibrium price and consumption vectors assuming $\alpha = \beta = 1$.
- (d) Find out the competitive equilibrium price and consumption vectors assuming $\beta = 1 - \alpha$ and $\alpha \in (0, 1)$.
- 6. Consider a two-person two-goods pure exchange economy. The initial endowment vectors are $\mathbf{e}^1 = (1,0)$ and $\mathbf{e}^2 = (0,1)$. Utility function for person 1 is:

$$u^{1}(x,y) = \begin{cases} 1, & \text{when } x + y < 1 \\ x + y, & \text{when } x + y \ge 1, \end{cases}$$

where x is the quantity of the first good and y is the quantity of the second good. Utility function for person 2 is: $u^2(x, y) = x + y$. $x, y \ge 0$. For this economy:

- (a) Find out a competitive equilibrium, assuming $p_1 = p_2 = 1$. (You can take it that there is at least one competitive equilibrium)
- (b) Is the competitive equilibrium Pareto efficient? Why or why not? Explain the finding.
- 7. Consider a two-person two-goods pure exchange economy. The initial endowment vectors are: $\mathbf{e}^1 = (1, \frac{1}{2})$ and $\mathbf{e}^2 = (0, \frac{1}{2})$. The utility functions are: $u^1(.) = x_1^1 + 2x_2^1$ and $u^2(.) = x_1^2 x_2^2$; $x, y \ge 0$. For this economy:
 - (a) Find out the competitive equilibrium vectors of consumptions and prices. Denote the equilibrium vector of prices by $\mathbf{p}^* = (p_1^*, p_2^*)$.
 - (b) Find out the competitive equilibrium with 'cash transfers', assuming that person 1 is required to pay $\frac{p_1}{2}$ to person 2.
- 8. Consider a two-person two-goods pure exchange economy. The initial endowment vectors are: $\mathbf{e}^1 = (2, r)$ and $\mathbf{e}^1 = (r, 2)$, where $r = 2^{\frac{8}{9}} 2^{\frac{1}{9}}$. The utility functions are: $u^1(.) = x_1^1 \frac{1}{8} \frac{1}{(x_2^1)^8}$ and $u^2(.) = -\frac{1}{8} \frac{1}{(x_1^2)^8} + x_2^2$. For this economy:
 - (a) Show that there are three competitive equilibria: with price vector $\mathbf{p} = (p_1^*, p_2^*) \frac{p_2^*}{p_1^*} = \frac{1}{2}, 1$, and 2.
 - (b) Which of the conditions necessary for uniqueness of competitive equilibrium is/are violated by the above economy?