ECONOMICS 001 Microeconomic Theory (Part 2) Summer 2018-19

Instructor: Ram Singh

Problem Set 2

This problem set is available with the Photocopy shop. Watch out for typos!

- 1. Problems 15.B.1-15.B.4 and 15.B.8 from MWG.
- 2. Problems 5.10, 5.11, 5.14, 5.15 and 5.17 from Jehle and Reny.
- 3. Consider a two person two goods pure exchange economy. The goods are; x and y. The utility functions are $u^1(.) = x_1^2 y_1$ and $u^2(.) = x_2 y_2$, and the initial endowments are $\mathbf{e}^1(.) = (25, 75)$ and $\mathbf{e}^2(.) = (25, 75)$. Assuming $p_1 = 1$, compute competitive equilibria for this economy.
- 4. Consider a two person two goods exchange economy. The goods are; x and y. The utility functions are $u^1(.) = x_1 \cdot y_1$ and $u^2(.) = x_2 + y_2$, and the initial endowments are $\mathbf{e}^1(.) = (4, 2)$ and $\mathbf{e}^2(.) = (2, 3)$. For this economy:
 - (a) Find out the competitive equilibrium consumption and price vectors. Draw the equilibrium allocations in the Edgeworth box.
 - (b) Consider the allocation $\mathbf{z} = (\mathbf{z}^1(.), \mathbf{z}^1(.))$, where $\mathbf{z}^1(.) = (1, 1)$ and $\mathbf{z}^2(.) = (5, 4)$. Find out if this allocation Pareto optimum?
 - (c) Find out the transfer payments T_1 and T_2 such that $T_1 + T_2 = 0$, and the allocation $\mathbf{z}^1(.) = (1, 1)$ and $\mathbf{z}^2(.) = (5, 4)$ is a competitive equilibrium with transfers.
- 5. Consider the following 2×2 pure exchange economy: The goods are; x and y. Individual utility functions are $u^1(.) = x^{\alpha}.y^{1-\alpha}$ and $u^2(.) = x^{\beta}.y^{1-\beta}$, $\alpha, \beta \in (0,1)$ and $\alpha \neq \beta$. The initial endowments are $\mathbf{e}^1(.) = (\bar{x}_1, \bar{y}_1) >> (0,0)$ and $\mathbf{e}^2(.) = (\bar{x}_2, \bar{y}_2) >> (0,0)$. For this economy:
 - (a) Does an increase in endowment of person 1 always have welfare enhancing effect for her?
 - (b) Does an increase in endowment of person 1 have welfare decreasing effect for person 2?
 - (c) Does an increase in endowment of person 2 always have welfare enhancing effect for him?
 - (d) Does an increase in endowment of person 2 have welfare decreasing effect for person 1?

- 6. Consider the economy as in the above question. Suppose $\alpha = \beta$. Is equal division of endowment between the individuals necessarily a Pareto optimum allocation?
- 7. Does equal division of endowment among the individuals constitutes a Pareto optimum allocation, in general?
- 8. Consider the following 3×3 pure exchange economy. The goods are; x, y and z. Individual utility functions are: $u^1 = 3x_1 + 2y_1 + z_1$; $u^2 = 2x_2 + y_2 + 3z_2$ and $u^3 = x_1 + 3y_1 + 2z_1$. The initial endowments are $\mathbf{e}^1 = \mathbf{e}^2 = \mathbf{e}^3 = (1, 1, 1)$. Do initial endowments
 - (a) constitute an 'equal division' allocation ?
 - (b) constitute a non-envious allocation?
 - (c) constitute a Pareto Efficient allocation?
- 9. Let $\mathbf{y} = \sum_{j=1}^{K} \mathbf{y}^{k}$, $\mathbf{y}^{k} \in \mathbb{Y}^{k}$, where \mathbf{y} , \mathbf{y}^{k} , \mathbb{Y}^{k} , etc., are as defined in the class. Now, consider the following two statements:

Statement 1: y maximizes the aggregate profit, for a price vector $\mathbf{p} = (p_1, ..., p_J)$. Statement 2: There is no $\mathbf{z} = \sum_{j}^{K} \mathbf{z}^k$, such that $\mathbf{z}^k \in \mathbb{Y}^k$ and $\mathbf{z} \ge \mathbf{y}$.

- (a) Does Statement 1 implies Statement 2?
- (b) Does Statement 2 implies Statement 1?

Prove your claims.

- 10. Is it possible to find out allocations of factors of production under a Walrasian equilibrium, without explicitly modeling the factor prices? Explain in detail.
- 11. For a 'regular' economy, prove that there can be only finitely many equilibria. (Optional question)
- 12. For a 2×2 economy, prove that under the standard assumptions on utility functions and the excess demand function, the number of equilibria will be odd.
- 13. Consider a $N \times M$ pure exchange economy. Suppose the initial endowments are such that: For all i = 1, 2..., N, $\mathbf{e}^i = (\bar{e}_1, ..., \bar{e}_M)$. Which of the following statements is/are necessarily correct?
 - (a) A Walrasian equilibrium allocation will satisfy the equal division property, i.e., will give same quantity of a good to each individual.
 - (b) A Walrasian equilibrium allocation will be non-envious.

14. Consider a two person two goods production economy. The goods are x_1 and x_2 . The utility functions are:

$$u^{1}(x_{1}^{1}, x_{2}^{1}) = x_{1}^{1} + \sqrt[4]{x_{2}^{1}}$$
 and $u^{2}(x_{1}^{2}, x_{2}^{2}) = x_{1}^{2} + \sqrt[2]{x_{2}^{2}}$;

where x_1^i and x_2^i is the quantity consumed by person *i* of good x_1 and x_2 , respectively; i = 1, 2. The initial endowments are $\mathbf{e}^1(.) = (4, 12)$ and $\mathbf{e}^2(.) = (8, 8)$. The production sector is competitive. It uses x_1 to produce x_2 , using production technology $x_2 = \alpha x_1$, subject to $x_1 \ge 0$ and $\alpha > 0$. Let $\theta^1 \ge 0$ and $\theta^2 \ge 0$ denote the shares of persons 1 and 2, respectively, in the profits of the production sector; $\theta^1 + \theta^2 = 1$. For this economy,

- (a) Find out competitive equilibrium prices and allocations, assuming that the production sector will meet the entire demand as long as profits are non-negative.
- (b) Can there be a competitive equilibrium involving no production of x_2 at all? If your answer is 'No', discuss the reasons why. If your answer is 'Yes', fully state the conditions for existence of such an equilibrium.