Social Choices Rules

Ram Singh

Microeconomic Theory

Lecture 18

Ram Singh: (DSE)

Social Choice

Lecture 18 1 / 8

Is Majority rule a SWF?

Proposition

There exists a SCR that satisfies conditions U, P, I, and ND.

Let

- *N*(*xPy*) number of individuals who strictly prefer *x* over *y*
- N(xRy) number of individuals who weakly prefer x over y

Definition

A Method of Majority Rule is a SWR such that:

$$(\forall x, y \in \mathbb{X})[x \mathfrak{R} y \Leftrightarrow [N(x P y) \ge N(y P x)], \text{ or }$$

$$(\forall x, y \in \mathbb{X})[x \mathfrak{R} y \Leftrightarrow [N(xRy) \ge N(yRx)].$$

MMR satisfies all conditions but $\mathfrak{R} \notin \mathbb{O}$.

Concentrated Power I

Definition

Almost Decisive Set. Let $V \subseteq \mathbb{N}$ be non-empty set, and $x, y \in \mathbb{X}$ be an ordered pair. Set V is almost decisive for x against y if

 $[(\forall i \in V)(xP_iy) \& (\forall j \in \mathbb{N} - V)(yP_ix)] \Rightarrow [xPy].$

In that case, we say: V is D(x, y).

Definition

Decisive Set. Let $V \subseteq \mathbb{N}$, and $x, y \in \mathbb{X}$ be an ordered pair. Set V is decisive for x against y if

$$(\forall i \in V)(xP_iy) \Rightarrow [x\mathcal{P}y].$$

In that case, we say: V is $\overline{D}(x, y)$. Note:

$$[V \text{ is } \overline{D}(x, y)] \Rightarrow [V \text{ is } D(x, y)].$$

Ram Singh: (DSE)

Concentrated Power II

Proposition

Suppose a SWF satisfies conditions U, P, I and ND.

 $[V \text{ is } D(x, y) \text{ for some } x, y \in \mathbb{X}] \Rightarrow [V \text{ is } \overline{D}(u, v) \text{ for all } u, v \in \{x, y, z\}].$

Proof: Suppose, $\exists x, y \in \mathbb{X}$ such that *V* is D(x, y). Take any $z \in \mathbb{X}$ such that $x \neq z$ and $y \neq z$. Consider the following profile:

$$(\forall j \in V)(xP_jy \& yP_jz)$$
 and
 $\forall i \in \mathbb{N} - V)(yP_ix \& yP_iz)$

So, we get

Concentrated Power III

$$[V \text{ is } D(x, y)] \Rightarrow [V \text{ is } \overline{D}(x, z)]$$
(1)

Next, let

$$(\forall j \in V)(zP_jx \& xP_jy)$$
 and
 $(\forall i \in \mathbb{N} - V)(zP_ix \& yP_ix).$ This gives

 $z\mathcal{P}x \& x\mathcal{P}y$, *i.e.*, $z\mathcal{P}y$, *i.e.*,

$$[V \text{ is } D(x, y)] \Rightarrow [V \text{ is } \overline{D}(z, y)]$$
(2)

Interchanging y and z in (2), in view of (1), we get

$$[V \text{ is } D(x,z)] \Rightarrow [V \text{ is } \overline{D}(y,z)]$$
(3)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Concentrated Power IV

Consider the following replacements in (1): $x \rightarrow y$, $y \rightarrow z$ and $z \rightarrow x$. Now, we get

$$[V \text{ is } D(y,z)] \Rightarrow [V \text{ is } \overline{D}(y,x)]$$
(4)

To sum up, we have

Interchanging x and y in (1), (2) and (5), we get

$$[V \text{ is } D(y,x)] \Rightarrow [V \text{ is } \overline{D}(y,z), V \text{ is } \overline{D}(z,x), \text{ and } V \text{ is } \overline{D}(x,y)]$$
 (6)

• • • • • • • • • • • •

Concentrated Power V

From (5) and (6), we get

 $[V \text{ is } D(x,y)] \Rightarrow [V \text{ is } \overline{D}(y,z), V \text{ is } \overline{D}(z,x), \text{ and } V \text{ is } \overline{D}(x,y)]$ (7)

(1), (2), (5) and (7) together implies

V is $\overline{D}(u, v)$ for all $u, v \in \{x, y, z\}$

Question

- How many conditions we have used so far?
- What is the size of V?

Proposition

Suppose a SWF satisfies conditions U, P, and I.

 $[V \text{ is } D(x,y) \text{ for some } x, y \in \mathbb{X}] \Rightarrow [V \text{ is } \overline{D}(u,v) \text{ for all } u, v \in \mathbb{X}].$

Impossibility Result I

Question

Can $\sharp V = 1$?

Theorem

There is no SWF that satisfies conditions U, P, I and ND simultaneously.

Ram Singh: (DSE)

Social Choice

Lecture 18 8 / 8