# Social Choice Rules: Possibility and Impossibility

Ram Singh

Microeconomic Theory

Lecture 18

## Arrow's Impossibility Theorem I

### Question

 $Can \sharp V = 1?$ 

#### **Theorem**

There is no SWF that satisfies conditions U, P, I and ND simultaneously.

**Proof**: Take any  $x, y \in \mathbb{X}$ . We know that if a SWF satisfies conditions U, P and I, then  $\exists V \subseteq \mathbb{N}$  such that:

V is 
$$D(x, y)$$
. Why?

Can we use Weak Pareto Principle here?



2/12

# Arrow's Impossibility Theorem II

Let

$$\mathbb{V} = \{ V | V \text{ is } D(u, v) \text{ for some } u, v \in \mathbb{X} \}.$$

Let  $ar{V} \in \mathbb{V}$  be the smallest size set. Suppose

$$\bar{V}$$
 is  $D(x, y)$ .

- Case 1:  $\sharp \bar{V}=$  1. No need to proceed further. So, consider
- Case 2:  $\sharp \bar{V} > 1$ . In that case, let
- $V_1, V_2 \subset \overline{V}$  be such that:  $\sharp V_1 = 1$ ;  $V_2 = \overline{V} V_1$ . So,
- $V_1$  and  $V_2$  form a partitioning of V, i.e.,  $V_1 \cup V_2 = \bar{V}$ , and  $V_1 \cap V_2 = \emptyset$
- Let  $V_3 = \mathbb{N} \bar{V}$



Ram Singh: (DSE)

## Arrow's Impossibility Theorem III

### Consider the following:

$$(\forall i \in V_1)[xP_iy & yP_iz].$$

$$(\forall j \in V_2)[yP_jz & zP_jx].$$

$$(\forall k \in V_3)[xP_ky & zP_kx].$$

This gives us yPz.

Also, 
$$yPx$$
 or  $xRy$ . Why?

But, yPx would mean

 $V_2$  is D(y, x), which means  $V_2$  is decisive - a contradiction.

On the other hand, xRy means

$$xRy \& yPz \Rightarrow xPz, i.e.,$$



4/12

# Arrow's Impossibility Theorem IV

$$V_1$$
 is  $D(x,z)$ ,

again a contradiction.

### **Theorem**

There is no SWF that can simultaneously satisfy conditions U, P I, and ND.

#### **Theorem**

If a SWF satisfies conditions U, P and I, then  $\exists i \in \mathbb{N}$  such that

$$(\forall x, y \in \mathbb{X})(\forall (R_1, ..., R_n) \in \mathbb{O}^n)[xP_iy \Rightarrow x\mathcal{P}y].$$

5/12

# SWF: Examples I

### **Proposition**

There exists a SCR that satisfies conditions U, P, I, and ND.

#### Let

- N(xPy) number of individuals who strictly prefer x over y
- N(xRy) number of individuals who weakly prefer x over y

#### Definition

A Method of Majority Rule is a SCR such that:

$$(\forall x,y\in\mathbb{X})[x\mathcal{R}y\Leftrightarrow[\textit{N}(x\textit{P}y)\geq\textit{N}(y\textit{P}x)], \text{ or }$$

$$(\forall x, y \in \mathbb{X})[x\mathcal{R}y \Leftrightarrow [N(x\mathcal{R}y) \geq N(y\mathcal{R}x)].$$

MMR satisfies all conditions but  $\mathfrak{R} \notin \mathbb{O}$ .



## SWF: Examples II

### Proposition

There exists a SWF  $f: \mathbb{D} \mapsto \mathbb{O}$  that satisfies conditions U, P, and ND, but does not satisfy condition I.

Example: 'Borda count' method.

However, consider the following profile:

## SWF: Examples III

### Proposition

There exists a SWF  $f: \mathbb{D} \mapsto \mathbb{O}$  that satisfies conditions P, I, and ND, but  $\mathbb{D} \subset \subset \mathbb{O}^n$ 

### Definition

Single Peakedness. R is single peaked if there exists a re-arrangement of alternatives in  $\mathbb{X}$ , say  $\{y_1, y_2, ..., y_m\}$ , and some  $y^*$ , say  $y^* = y_k$ , such that

$$j' < j \le k \Rightarrow y_j P y_{j'}$$
  
 $l' > l \ge k \Rightarrow x_l P x_{l'}$ 

Remark: In general,  $y^*$  will differ across Preference relations.

←□ → ←□ → ← □ → ← □ → ← ○

8/12

## SWF: Examples IV

### Proposition

If preferences are single-peaked and number of individuals is odd, there exists a SWF  $f: \mathbb{D} \mapsto \mathbb{O}$  that satisfies conditions P, I, and ND.

Answer is: MMR

9/12

## Liberal Paradox I

### Definition

**Liberalism L**: For every  $i \in \mathbb{N}$ , there is a pair of distinct alternatives  $(x, y) \in \mathbb{X} \times \mathbb{X}$  such that

$$xP_iy \Rightarrow x\mathcal{P}y \text{ and } yP_ix \Rightarrow y\mathcal{P}x$$

### Definition

Minimal Liberalism L\*: For at least two individuals Liberalism holds.

### Proposition

No SWF can satisfy conditions U, P and L\*

Suppose conditions U, P and L\* hold. Let



## Liberal Paradox II

- j be decisive for (x, y)
- k be decisive for (z, w)
- $xP_jy$ ,  $zP_kw$  and  $(\forall i)[wP_ix \& yP_iz]$

This gives us,

$$xPy$$
,  $zPw$ ,  $wPx$  and  $yPz$ , i.e.,  $xPz$ ,  $zPw$ , and  $wPx$ ,

a contradiction.

The preferences are as follows x z,

. *y w* 

Z X



Ram Singh: (DSE)

# Summing Up

- Implications of relaxing condition  $\mathfrak{R} \in \mathbb{O}$
- Implications of relaxing/changing condition I
- Implications of relaxing/changing condition P
- Implications of relaxing/changing condition ND
- Implications of relaxing/changing condition U

### There are trade-offs among

- Rationality of society
- Individual liberty
- Democracy



Ram Singh: (DSE)