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C. Non-linear Difference and Differential Equations: Linearization 
and Phase Diagram Technique 
 
So far we have discussed methods of solving linear difference and differential equations. 
Let us now discuss the case of nonlinear difference and differential equations.  
 
The first point to be noted here is that it is extremely difficult to derive an exact solution 
to a non-linear difference or differential equation. However, two techniques are often 
used to draw some qualitative inference about the behaviour of the dynamic system: one 
of these is the linearization technique, and the other is the phase diagram technique. 
 
C.1 Linearization of non-linear difference/differential equations 
and local stability analysis: 
 
(a) Single non-linear equation: 
Consider any nonlinear function of a single variable x: RDxf →:)(  where D and R are 
the domain and range of the function respectively. Let Dx∈ˆ  be some given value of the 
variable. Then by Taylor’s Theorem, the function )(xf  can be expanded around x̂  in 
the following way: 
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Now a linear approximation of the non-linear function )(xf  around the point x̂  is given 
by: 
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 i.e., ]ˆ)ˆ()ˆ([)ˆ()( xxfxfxxfxf ʹ′−+ʹ′≅       (21) 
Note the linear function given above is only an approximation of the )(xf  function 
around x̂ , i.e., it resembles the )(xf  function only in a small neighbourhood of x̂ . In 
general this linear function does not closely approximate the )(xf  function for all values 
of x. Thus whatever conclusion we draw on the basis of this linear approximation will 
only be valid locally around x̂ . 
 
Linearization technique is often used to convert a non-linear difference or differential 
equation into a linear form. Generally the non-linear equation is linearly approximated 
around its steady state value. This allows us to derive some conclusions about the time 
path of the variable in the neighbourhood of the steady state and thus its local stability 
property.   
First let us consider a non-linear difference equation of the form: 
 )( 1−= tt xfx          (22) 
(We are ignoring the parameter vector α  for the time being). 
We know that the steady state of the above difference equation is defined as 

xxx tt == −1 , i.e., )(xfx = .  Suppose there is indeed a x  that solves this equation. In 

other words, suppose a steady state exists. Then linearizing the )( 1−txf  equation 
around x , we get a linear differential equation of the form: 
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 ))(()()( 11 xxxfxfxfx ttt −ʹ′+≅= −−  

                                   ])()([)( 1 xxfxfxxf t ʹ′−+ʹ′= −  

           baxt += −1        (22ʹ′) 

Solution: xaCx t
t += )( , C an arbitrary constant. 

Stability depends on the term a, i.e., on the term )(xf ʹ′ .  

If 1)( <ʹ′ xf  the system is locally stable; if 1)( >ʹ′ xf  the system is locally unstable. 
 
We can proceed to analyse the local stability property of a non-linear differential 
equation in an analogous manner. Consider a non-linear differential equation of the 
form: 

 )(xf
dt
dx

=          (23) 

The steady state of this differential equation is defined by 0=
dt
dx

, i.e., 0)( =xf . 

Suppose there is a x  that satisfies this steady state condition. Then linearizing )(xf  
around x , we can write the differential equation (23) as: 

 ))(()( xxxfxf
dt
dx

−ʹ′+≅  

       ] 0)(  [since     )()( =ʹ′−ʹ′= xfxxfxxf  
       bax −=          (23ʹ′) 
Solution: constant arbitrary an        ;exp)( CxCtx at+= . 
Once again stability depend on term a, i.e., on )(xf ʹ′  . 
If 0)( <ʹ′ xf , the system is locally stable; if 0)( >ʹ′ xf , the system is locally unstable. 
 
(b) 2 dimensional system of non-linear equations: 
 
Let us first consider the following non-linear system of differential equations: 
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The steady state of this system is defined as ),( yx  such that 0),( =yxf  and 
0),( =yxg . Suppose that a steady state exists. Then for the two variable functions 

),( yxf  and ),( yxg , we can derive the linear approximations around ),( yx  as: 
))(,())(,(),(),( yyyxfxxyxfyxfyxf yx −+−+≅  

 ))(,())(,(),(),( yyyxgxxyxgyxgyxg yx −+−+≅  
Noting that 0),( =yxf  and 0),( =yxg  (from the definition of the steady state) and 
simplifying, we can transform the non-linear system given in (24) to a corresponding 
linear system of the following form: 
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The coefficient matrix of this linear system is given by the following Jacobian matrix of 
partial derivatives of ),( yxf  and ),( yxg (with the derivatives being evaluated at the 
steady state): 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

),(),(
),(),(
yxgyxg
yxfyxf

A
yx

yx        (25) 

If the explicit function forms of ),( yxf  and ),( yxg were known to us, then we could 
directly calculate the steady state values of x and y and find out the exact numerical 
values of these partial derivatives evaluated at that steady state. Thus we could then find 
the exact form of the co-efficient matrix and proceed to solve the system of linear 
differential equations given in  (24ʹ′) following the method discussed earlier.   
But even when the exact functional forms of ),( yxf  and ),( yxg  are not known, we can 
still say something about the stability of the system without actually solving the system, 
provided we are given certain information about these partial derivatives. To see how, 
first recall that for a 22×  system of linear differential equations, stability of the system 
depends crucially on the characteristics roots of the co-efficient matrix. If the co-efficient 
matrix has real characteristic roots (either distinct or repeated), then the dynamic system 
is stable if the roots are negative; is unstable if the roots are positive, and is a saddle 
point if one root is positive and one is negative. On the other hand, if the coefficient 
matrix has complex characteristic roots of the general form ivu ± , then the stability 
depends on the real part of the complex root u: the system is oscillatory stable (cycles 
with decreasing amplitudes) if 0<u ; the system is oscillatory unstable (cycles with 
increasing amplitudes) if 0>u ; and the system will show uniform cycles with constant 
amplitudes (neither stable nor unstable) if 0=u . Thus in order to be able to say 
something about the (local) stability of system given in  (24ʹ′), we have to examine the 
characteristics roots of the co-efficient matrix given in (25).  
Note that the characteristic equation for the Jacobian matrix given in (25) is: 
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      i.e., 0),().,(]),([  ]),([ =−−− yxgyxfyxgyxf xyyx λλ  
Simplifying,  
 0)],().,(),().,([)],(),([2 =−++− yxgyxfyxgyxfyxgyxf xyyxyxλ  

      i.e., 0Det]Trace[2 =+− AA λλ        (26) 
Now form the theories of quadratic equations, we know that for any quadratic equation of 
the form 02 =+− qpxx  has two roots 1x  and 2x  such that pxx =+ 21  and qxx =21. . 
Applying this theorem to (26) (which is a quadratic equation in λ ), we know that the two 
characteristics roots would be such that ATrace21 =+λλ  and ADet. 21 =λλ . 
We can now proceed to discuss different alternative (and mutually exclusive) 
possibilities: 
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CASE I: 0Det4)Trace( 2 ≥− AA  (implying that the roots are real) 
 
Subcase (a): DetA<0; TraceA could be anything (i.e., greater than, equal to, or less than 
zero). 
Note that DetA<0 implies 021 <λλ , i.e., 1λ  and 2λ  are have opposite signs. Thus one of 
them would be positive and one negative. Hence in this case the equilibrium will be 
locally a saddle point. 
Subcase (b): DetA>0; TraceA>0. 
In this case DetA>0 implying 021 >λλ , i.e., 1λ  and 2λ  are of same sign – either both 
are positive or both are negative. But it also given that TraceA>0 implying 021 >+λλ . 
Thus both 1λ  and 2λ  must be positive. Hence in this case the equilibrium is locally 
unstable. 
 
Subcase (c): DetA>0; TraceA<0. 
In this case once again 0Det 21 >= λλA ; hence 1λ  and 2λ  have the same signs. But 
now TraceA<0 implying 021 <+λλ . Thus both 1λ  and 2λ  must be negative. Hence in 
this case the equilibrium is locally stable. 
 
Remark. The determinant of the co-efficient matrix can never be zero for any linearly 
independent system. Thus DetA is either positive or negative. 
 
Remark.  Note that when the roots are real (i.e., 0Det4)Trace( 2 ≥− AA ), the possibility 
that DetA>0 and TraceA=0 cannot arise because when TraceA=0, then the roots will be 
real if and only if 0Det0Det4 <⇒>− AA . 
 
CASE II: 0Det4)Trace( 2 <− AA  (implying that the roots are complex) 
In this case, the roots will have the general form a ib± . Therefore,  
 1 2Trace ( ) ( ) 2A a ib a ib aλ λ= + = + + − =  

 2 2
1 2Det ( )( )A a ib a ib a bλ λ= = + − = +  

Now recall that for a two dimensional system of linear differential equations with complex 
roots, the stability of the system depends on the real part of the complex root a. 
Therefore, in this case, we can determine the stability property of the system by simply 
looking the TraceA. 
Trace 0 0A a> ⇒ > ; hence the system will be unstable (unstable oscillations) 
Trace 0 0A a< ⇒ < ; hence the system will be stable (stable oscillations) 
Trace 0 0A a= ⇒ = ; hence the system will exhibit uniform cycles which are neither 
stable nor unstable. 
 
  
Let us next consider a non-linear system of difference equations, given by 
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The steady state of this system of difference equations is defined as ),( yx  such that 
),( yxfx = and ),( yxgy = . Suppose that a steady state exists. Then for the two 
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variable functions ),( 11 −− tt yxf  and ),( 11 −− tt yxg , we can derive the linear 
approximations around ),( yx  as: 

))(,())(,(),(),( 1111 yyyxfxxyxfyxfyxf tytxtt −+−+≅ −−−−  

 ))(,())(,(),(),( 1111 yyyxgxxyxgyxgyxg tytxtt −+−+≅ −−−−  
Using these two linear approximations, we can transform the nonlinear system of 
difference equation given in (27) to the following linear system: 
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Like the differential equation case, the coefficient matrix of this linear system is again 
given by the Jacobian matrix: 
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We know that the stability of the system once again depends on the characteristic roots 
of this co-efficient matrix. However unlike the differential equation case, if the roots are 
real, stability condition now requires that the absolute values of both these roots be less 
than unity. If the roots are real and have absolute values greater than unity, the system 
in unstable. If one of the real roots have absolute value greater than unity and the other 
one has absolute value less than unity, then equilibrium is a saddle point. Also recall that 
when the roots are complex and of the general form ivu ± , then stability depend on the 

modulus 22 vur += . The system will show stable oscillations if 1<r ; will show 
unstable oscillations if 1>r ; and will be characterised by uniform oscillations (neither 
stable nor unstable) if 1=r . 
 
Given the co-efficient matrix A, we can again derive the characteristic equation as 
 0)],().,(),().,([)],(),([2 =−++− yxgyxfyxgyxfyxgyxf xyyxyxλ  

      i.e., 0Det]Trace[2 =+− AA λλ . 
As before, the characteristic roots would be such that ATrace21 =+λλ  and 

ADet. 21 =λλ . Thus as we did in the differential equation case, by examining the signs of 
TraceA and DetA, we can derive some conclusions about the signs of the characteristics 
roots. However that information is now not sufficient for stability. In order to be able to 
say something about the stability of the system, we have to check whether the 
characteristic roots are greater or less than unity in absolute value. To determine 
whether 1λ  and 2λ  are less than unity in absolute value, we use some additional 
conditions that are discussed below. 
 
CASE I: 0Det4)Trace( 2 ≥− AA  (implying that the roots are real) 
 
Consider the real line and take the two points +1 and –1 as two reference points: 
 
 
 
There are six possibilities here: 
(i) Both 1λ  and 2λ  lies in (-1,1), which implies that the equilibrium is stable. 

+1 -1 ∞+  ∞−  
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(ii) One λ  lies in (-1,1), the other one in (+1, ∞ ),  which implies that the equilibrium is a 
saddle point. 
(iii) One λ  lies in (-1,1), the other one in (-∞ , -1),  which implies that the equilibrium is a 
saddle point. 
(iv) One λ  lies in (+1, ∞ ), the other one in (-∞ , -1),  which implies that the equilibrium is 
unstable. 
(v) Both 1λ  and 2λ  lies in (+1, ∞ ), which implies that the equilibrium is unstable. 
(vi) Both 1λ  and 2λ  lies in (-∞ , -1), which implies that the equilibrium is unstable. 
 
But how do we know which of these cases are true? Can we determine that from the 
Trace and the Determinant of the co-efficient matrix, as we did for the differential 
equation case? The answer is “yes”,  but in order to do that we need to know something 
more than just the signs of the Trace and the Determinant.  To be more precise, we 
need to know whether 1λ  and 2λ  lie on the same side or the opposite sides of 1 and –1 
respectively.  
 
Note that  
(i) If 1λ  and 2λ  lie on the same side of +1 (either both lie to the left of +1, or both to the 
right), then 0)1)(1( 21 >−− λλ , i.e., 01)( 2121 >+− +λλλλ . 
(ii) If 1λ  and 2λ  lie on the opposite sides of +1 (one to the left and one to the right), then 

0)1)(1( 21 <−− λλ , i.e., 01)( 2121 <+− +λλλλ . 
(iii) If 1λ  and 2λ  lie on the same side of –1 (either both lie to the left of –1, or both to the 
right), then 0)1)(1( 21 >++ λλ , i.e., 01)( 2121 >++ +λλλλ . 
(iv) if 1λ  and 2λ  lie on the same side of –1 (one to the left and the other to the right), 
then 0)1)(1( 21 <++ λλ , i.e., 01)( 2121 <++ +λλλλ . 
Noting that ATrace21 =+λλ  and ADet. 21 =λλ , we can write these conditions in terms 
of TraceA and DetA as: 
(i) 01TraceDet >+− AA  implies 1λ  and 2λ  lie on the same side of +1; 
(ii) 01TraceDet <+− AA  implies 1λ  and 2λ  lie on the opposite sides of +1; 
(iii) 01TraceDet >++ AA  implies 1λ  and 2λ  lie on the same side of –1; 
(iv) 01TraceDet <++ AA  implies 1λ  and 2λ  lie on the opposite sides of –1. 
 
Now let us consider all the possible cases: 
 
Case (I-a): 01TraceDet >+− AA ; 01TraceDet >++ AA   
Then 1λ  and 2λ  lie on the same side of +1 as well as –1.  
There are mutually exclusive possibilities here: either ),1(, 21 +∞+∈λλ ; or 

),1(, 21 −∞−∈λλ ; or )1,1(, 21 +−∈λλ . 1λ  and 2λ  must lie in one of these sets; no other 
situation is possible. 
In order to know precisely in which set 1λ  and 2λ  belong to, we look at the information 
given about TraceA and DetA. 

1 2DetA 1 1λ λ< ⇔ < , hence )1,1(, 21 +−∈λλ ; so the equilibrium is stable. 

DetA>1  and Trace 0A > ⇔ ),1(, 21 +∞+∈λλ ; so the equilibrium is unstable. 
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DetA>1  and Trace 0A < ⇔  ),1(, 21 −∞−∈λλ ; so the equilibrium is unstable. 
     
Case (I-b): Det Trace 1 0A A− + < ; 01TraceDet <++ AA  
Then 1λ  and 2λ  lie on the opposite sides of +1 as well as –1. 
The only possibility here : one λ  lies in (+1, ∞ ), the other one in (-∞ , -1),  which implies 
that the equilibrium is unstable. 
 
Case (I-c): Det Trace 1 0A A− + > ;Det Trace 1 0A A+ + <  
Then 1λ  and 2λ  lie on the same side of +1, but opposite sides of –1. 
The only possibility here is: one λ  lies in (-1,1), the other one in (-∞ , -1),  which implies 
that the equilibrium is a saddle point. 
 
Case (I-d): 01TraceDet <+− AA ;Det Trace 1 0A A+ + >  
Then 1λ  and 2λ  lie on the opposite sides of +1, but on the same side of –1. 
The only possibility here is: one λ  lies in (-1,1), the other one in (+∞ , +1),  which 
implies that the equilibrium is a saddle point. 
 
 
CASE II: 0Det4)Trace( 2 <− AA  (implying that the roots are complex) 
If the roots are complex they have the general form ivu ± . Therefore,  
 1 2Trace ( ) ( ) 2A a ib a ib aλ λ= + = + + − =  

 2 2
1 2Det ( )( )A a ib a ib a bλ λ= = + − = +  

As was mentioned before, in the difference equation case with complex roots, stability 

depends on the term 2 2a b+ . Thus we can determine the stability property of the 
system by looking at the determinant alone.  

If 2 2Det 1A a b= + < , then 2 2 1a b+ < , so the system will show stable oscillations; 

If 2 2Det 1A a b= + > , then 2 2 1a b+ > , so the system will show unstable oscillations; 

If 2 2Det 1A a b= + = , then 2 2 1a b+ = , so the system will show uniform oscillations 
which are neither stable nor unstable. 
 
 
C.2 Phase Diagram Analysis: 
Sometimes along with linearization technique, a diagrammatic method is used in order to 
derive some qualitative conclusions about the behaviour of the dynamic system over 
time. This graphical method is known as the phase diagram technique and is often used 
to analyse the behaviour of non-linear dynamic equations.  
 
(a) Phase portrait for single difference or differential equation: 
In the one dimensional (single equation) case, the phase diagram technique typically 
involves plotting the state variable in horizontal axis and the changes in the value of the 
state variable along the vertical axis.  
First consider a difference equation of the form 
 )(1 tt xfx =−  
The change in the state variable x is defined as  



 30 

1−−=Δ tt xxx  

        11)( −− −= tt xxf         (28) 

Note that 0>Δx  means 1−> tt xx , i.e., x is increasing over time. 
Similarly, 0<Δx  means x is decreasing over time. 
And 0=Δx  means x is constant over time, which in turn implies that the system is at its 
steady state. 
Now we want to plot the change in x corresponding to different values of the state 
variable itself. From (28), we see that change in x is reflected in the difference between 

)( 1−txf  and 1−tx . Thus we can plot these two functions separately as )( 1−= txfy  and 

1ˆ −= txy  and observe their difference in order to get an idea about xΔ . If we plot the 

function 1ˆ −= txy , with 1−tx  in the horizontal axis, we will get the o45  line.  However 

plotting )( 1−= txfy  with 1−tx  in the horizontal axis requires certain information about the 
slope the curvature of the f function. The diagram below depicts a hypothetical f function 
as an example. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Note that in the diagram the )( 1−txf  curve intersects the 45o line (representing 1−tx ) 

twice – at *x  and **x  respectively. At these two x values 0)( 11 =−=Δ −− tt xxfx ; hence 
they represent the two steady state points. 
Also note that in a close neighbourhood of *x , if we take an x value to the left of 
*x , )( 1−txf lies below the 45o line implying 0<Δx . Hence x is decreasing in that region. 

We draw an arrow pointing towards the left to indicate that x is decreasing here. On the 
other hand, if we take an x value to the right of *x (in a small neighbourhood of 
*x ), )( 1−txf lies above the 45o line implying 0>Δx . Hence x is increasing in that region. 

Once again we draw an arrow pointing towards the right to indicate that x is increasing 
here.   
Similarly, one can see that in a small neighbourhood of the second equilibrium point **x , 

0>Δx  if we take an x value lying to its left and 0<Δx  if we take an x value lying to its 
right. Hence we can draw the arrows accordingly. 

x t-1 (45o line) 

f(xt-1) 

xt-1 
x* x** 
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Thus the diagram above – complete with the direction of movements of x (the arrows) in 
different regions – enables us to derive graphically that *x  is a locally unstable 
equilibrium (because both the arrows on either side of *x point outwards – indicating that 
x is moving away from *x ) and **x  is a locally stable equilibrium (because both the 
arrows in its either side point inwards indicating that x is moving towards **x  ). 
 
The phase diagram for a differential equation can be constructed in an analogous 
manner. Consider the differential equation  

 )(xf
dt
dx

= . 

The phase diagram plots the change in x corresponding to different values of the state 
variable. Here the change in x over time is directly measured by the )(xf  function. If 

0)( >xf , 0>
dt
dx

 - implying x in increasing over time;  if 0)( <xf , 0<
dt
dx

 - implying x 

in decreasing over time; and if 0)( =xf , 0=
dt
dx

 - implying x remains constant (the 

steady state). If we are given ceratin information regarding the slope and curvature of 
)(xf , we can draw the phase portrait for this differential equation. The diagram below 

again depicts a hypothetical f function as an illustration: 
 
 
 
 
 
 
 
 
 
 
 
 
In the diagram the )(xf curve intersects the horizontal axis thrice, denoting three steady 
state points: *x , **x and ***x  respectively. 
If we consider a small neighbourhood of the first equilibrium point, to its left 0)( >xf  
and to its right 0)( <xf  – implying that x in increasing to its left and decreasing to its 
right. Thus again we draw the arrows to indicate the direction of movement of x.  
Similarly, we can find out the direction of movements of x in close neighbourhoods of the 
other equilibrium points as well and draw the arrows accordingly. 
The complete phase diagram now tells us that *x and ***x are locally stable equilibrium 
points while **x  is locally unstable. 
 
(b) Phase portrait of a two dimensional system : 
In the two dimensional case, the phase diagram typically traces the curves along which 
the values of the state variables remain unchanged over time. Using these two curves as 
the reference points, one then identifies the regions where the state variables are 
changing and determines the direction of change for each of the state variable.   

x* x** x*** x 
f(x) 
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Let us first consider the 22×  system of difference equations: 
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As before, we can denote the changes in x and y respectively as: 

 1 1 1 1 1

1 1 1 1 1
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Now we trace the curves 0=Δx  and 0=Δy , measuring x along the horizontal axis and 
y along the vertical axis. 

Note that  the slopes of these two curves in the (x,y) plane is given by 
0

1 x

yx

dy f
dx fΔ =

−
=  

and  
y

x

g
g

dx
dy

y −
=

=Δ 10
 respectively. We cannot draw these curves unless we are given 

some information about these partial derivatives. 
For illustrative purposes, let us assume that 1;0;1;0 <<<> yxxy ggff  for all 0, >yx . 

This implies that ˆ ˆ ˆ ˆ0; 1 0; 0; 1 0y y x x x x y yf f f f g g g g= > = − < = < = − < . 
 
 
Then in the positive quadrant 0=Δx  is an upward sloping curve as shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us now consider the region above 0=Δx . Recall that along any point on the 0=Δx  
curve, ˆ ( , ) 0f x y = . Now in the region above this curve, for each value of x, y is higher 

than the corresponding  y value along 0=Δx . Since ˆ 0yf > , it implies that in the region 

above 0=Δx , ˆ ( , ) 0f x y > . Thus 0>Δx  and x is increasing in this region. As before, 
we draw an arrow pointing to the right to indicate that x in increasing here. 
Using analogous argument, we can show that in the region below 0=Δx  curve, 
ˆ ( , ) 0f x y <  –  implying 0<Δx  and x is decreasing in this region. Thus we draw an 

arrow here pointing to the left. 
On the other hand, given the conditions on the partial derivatives, 0=Δy  is a downward 
sloping curve in the (x,y) plane, as depicted below: 
 
 

x 

y 0=Δx  

0>Δx  

0<Δx  
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Now consider the region above 0=Δy  curve. For any x, the y value in this region is 
higher than the corresponding y along 0=Δy . Since ˆ 0yg < , it implies that in this region 
ˆ( , ) 0g x y < , i.e., 0<Δy . Thus y in decreasing here. We draw an arrow pointing down to 

indicate the y in decreasing in this region. 
 
By analogous argument, we can show that in the region below 0=Δy  curve, 
ˆ( , ) 0g x y > ; hence y is increasing here and we draw an arrow point up to indicate that.  

Combining these two diagrams we can draw the complete phase portrait for this two 
dimensional system of difference equations as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The point of intersection between the two curves denote s the steady state such the at 
this point (and only at this point) both 0=Δx  and 0=Δy . If we start from any other 
point, the direction of arrows tells us which way x and y would move. In this specific case 
we find that all the arrows point towards the equilibrium; hence the equilibrium is stable 
here.  
If the directions of the arrows are such that they point outward, away from the 
equilibrium, then the diagram tells us that the equilibrium is unstable. 

x 

y 

0=Δy  

0<Δy  

0>Δy  

x 

y 

0=Δy  

0=Δx  

x* 

y* 
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If the arrows are such that from some regions they point towards the equilibrium, and 
from other regions, they point outward – away from the equilibrium, then we can 
conclude that the equilibrium is a saddle point. 
 
 
To draw the phase portrait of a two dimensional system differential equations, we can 
proceed in similar way. Consider the following system: 

),(

),(

yxg
dt
dy

yxf
dt
dx

=

=
   

We first draw the curves 0),( =yxf  and 0),( =yxg  in the (x,y) plane and using these 
two curves as reference points, determine the direction of movements of x and y for 
different regions lying above or below these two curves. Again the point of intersection of 
the two curves would denote the steady state and the direction of arrows will tell us 
whether the steady state is stable, unstable or a saddle point, exactly as in difference 
equation case. 


