Take it or Beat it: Bargaining with Govt under the shadow of Litigation

Ram Singh

Lecture 7

Ram Singh (DSE)

Govt Litigation

1/15

A .

Market Value Vs Awards I

Consider a special case of:

- Property size is 1
- Both sides are equally competent
- Courts are neutral

$$E(r^c \mid r, x, y) = \phi(r)(ax^{\frac{1}{k}} - by^{\frac{1}{l}})$$
, such that

•
$$\phi(\mathbf{r}) = \delta \mathbf{r}, \, \delta > \mathbf{0}$$

•
$$a = b$$
 and $j = k$

Market Value Vs Awards II

That is,

$$E(r^c \mid r, x, y) = \phi(r)(ax^{\frac{1}{k}} - by^{\frac{1}{l}}) = \delta r(ax^{\frac{1}{k}} - ay^{\frac{1}{k}}).$$

So, given *y* and *r*, the *O* will solve:

$$\max_{x} \left\{ \left[\delta r(ax^{\frac{1}{k}} - ay^{\frac{1}{k}}) \right] - \psi(x) - x_0 \right\}, i.e.,$$
 (0.1)

For given x, G solves:

$$\min_{\mathbf{y}} \left\{ \lambda \left[\left[\delta r(\mathbf{a} \mathbf{x}^{\frac{1}{k}} - \mathbf{a} \mathbf{y}^{\frac{1}{k}}) \right] + \mathbf{y}_0 \right] + \psi(\mathbf{y}) \right\}, i.e.,$$
(0.2)

イロト イポト イヨト イヨト

The Multiplier

The Multiplier denotes:

- The size/magnitude of the Property,
- Or, the compensation multiplier
 - Compensation is market value Plus a solatium, i.e.,
 - Under LAA 1894, *M* = 1.3 market value plus 30% solatium
 - Under LARR 2014 *M* ≥ 2

In any case, the owner is entitle to

- Total Compensation is $M \times r$, where $M \ge 1$
- The full offer by G will be $M \times r^{O}$,
- The total court provided compensation will be $M \times r^C$

The Multiplier I

Let Multiplier be M. So, given y and r, the O will solve:

$$\max_{x} \left\{ M[\delta r(ax^{\frac{1}{k}} - ay^{\frac{1}{k}})] - \psi(x) - x_0 \right\}, i.e.,$$
 (0.3)

For given *x*, G solves:

$$\min_{y} \left\{ \lambda \left[M[\delta r(ax^{\frac{1}{k}} - ay^{\frac{1}{k}})] + y_0 \right] + \psi(y) \right\}, i.e., \tag{0.4}$$

So, x^* and y^* solve the following FOCs:

$$M(\frac{a\delta r}{k})x^{\frac{1-k}{k}}=x$$

$$-M\lambda(\frac{-a\delta r}{k})y^{\frac{1-k}{k}}=y$$

・ロト ・四ト ・ヨト ・ヨト

The Multiplier II

We get

$$x^{*} = \left(\frac{aM\delta r}{k}\right)^{\frac{k}{2k-1}}$$
(0.5)
$$y^{*} = \left(\frac{a\lambda\delta rM}{k}\right)^{\frac{k}{2k-1}}$$
(0.6)

Note that:

$$\frac{ME(r^c \mid r, x, y)}{Mr} = \delta(ax^{\frac{1}{k}} - ay^{\frac{1}{k}}). \qquad (0.7)$$

Therefore, from (0.7), (0.5) and (0.6), the equilibrium ratio is

$$\frac{E^{*}(r^{c} \mid r, x, y)}{r} = \frac{E(r^{c} \mid r, x^{*}, y^{*})}{r} = \delta a(x^{*\frac{1}{k}} - y^{*\frac{1}{k}}).$$
(0.8)

э

The Multiplier III

Proposition

$$\lambda < 1 \Rightarrow \frac{d}{dr} \left(\frac{E^*(r^c \mid r, x, y)}{r} \right) > 0.$$

Show that:

Proposition

$$\lambda < 1 \Rightarrow \frac{d}{dM}\left(\frac{E^*(r^c \mid r, x, y)}{r}\right) > 0.$$

Ram	Sina	hι	'DS	E)
1 icanii	Unig		,00	-)

æ

イロト イヨト イヨト イヨト

General Case (OPTIONAL) I

For the general case, i.e., when

$$E(r^{c} \mid r, x, y) = \phi(r)(ax^{\frac{1}{k}} - by^{\frac{1}{l}}),$$

where j, k > 1. x^* and y^* solve the following FOCs:

$$M(\frac{a\phi(r)}{k})x^{\frac{1-k}{k}} = x \tag{0.9}$$

$$-M\lambda(\frac{-b\phi(r)}{j})y^{\frac{1-j}{j}} = y$$
(0.10)

We get

$$y^* = \left(\frac{b\lambda\phi(r)M}{j}\right)^{\frac{j}{2j-1}}$$
$$x^* = \left(\frac{aM\phi(r)}{k}\right)^{\frac{k}{2k-1}}$$

Ram Singh (DSE)

Govt Litigation

General Case (OPTIONAL) II

Further

$$\frac{dx^*}{dr} = \left(\frac{aM}{k}\right)^{\frac{k}{2k-1}} \left(\frac{k}{2k-1}\right) (\phi(r))^{\frac{1-k}{2k-1}} \phi'(r)$$
$$\frac{dy^*}{dr} = \left(\frac{b\lambda M}{j}\right)^{\frac{j}{2j-1}} \left(\frac{j}{2j-1}\right) (\phi(r))^{\frac{1-j}{2j-1}} \phi'(r)$$

$$\frac{dE^{*}}{dr} = (\phi(r))^{\frac{1}{2k-1}} \phi'(r) \left(\frac{a}{k}\right)^{\frac{2k}{2k-1}} \left(\frac{k}{2k-1}\right) \\
- (\phi(r))^{\frac{1}{2j-1}} \phi'(r) (\lambda)^{\frac{1}{2j-1}} \left(\frac{b}{j}\right)^{\frac{2j}{2j-1}} \left(\frac{j}{2j-1}\right).$$
(0.11)

Ram Singh (DSE)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

General Case (OPTIONAL) III

Proposition

$$[(1 < k \le j \text{ and } a > b) \text{ or } (1 < k < j \text{ and } a \ge b)] \Rightarrow \frac{dE^*}{dr} > 0.$$

From (0.11) note that

- when λ is small $\frac{dE^*}{dr} > 0$ will hold, for a wide range of a, b, j and k.
- In fact, when λ is sufficiently small $\frac{d[\frac{E^*}{r}]}{dr} > 0$ will hold.

・ロ・・ (日・・ モ・・ ・ 日・・

Payoffs: Symmetric Uncertainty

Let,

 V_O^* denoted the expected net gains for O from litigation.

Let

$$r^{a}M = V_{O}^{*} = ME(r^{c} \mid r, x^{*}(r), y^{*}(r, \lambda)) - \psi(x^{*}(r, y^{*})) - x_{0}.$$

The owner will accept the offer ro only if

$$r^o \ge r^a$$

Clearly, r^a depends on r. Whenever $\frac{dV_o^*}{dr} > 0$,

$$\frac{dr^a}{dr} > 0. \tag{0.12}$$

If there are no constraints to bargaining:

- The parties will bargain successfully .
- Payoffs of the O will increase with market value of property.

Prohibition of Reformatio in Peius

- The legal doctrine applies to the decision of appeal courts, especially in the civil law countries.
- The court decision should not put the appellant in a position worse than his position before appeal.
- As a result, it is the principle of 'appeal without fear'.
- In India, Section 25 of LAA 1894 (amendment, 1984)
 - mandates that the court award cannot be less than the LAC awarded compensation.
 - litigation by the affected parties is risk-free venture.

Formally, let

 r_{LAC} denote the compensation rate offered by the LAC.

э.

Prohibition of Reformatio in Peius: Consequences I

Assume:

- No litigation efforts no x and y
- Only fixed litigation costs

No Prohibition of Reformatio in Peius

The expected value of the court award, $E^{NP}(r^c)$

$$E^{NP}(r^{c}) = \int_{\frac{r^{c}}{c}}^{\bar{r}^{c}} r^{c} f(r^{c}) dr^{c}.$$
 (0.13)

Net gains to the Owner

$$E^{NP}(r^{c}) = \int_{r^{c}}^{\bar{r}^{c}} r^{c} f(r^{c}) dr^{c} - x_{0}$$
 (0.14)

13/15

Prohibition of Reformatio in Peius: Consequences II

Proposition

In the absence of Prohibition of Reformatio in Peius

- The executive award: $r_{LAC}^{NP} = E^{NP}(r^c) \frac{x_0}{2}$
- There is no litigation.

Under *Prohibition of Reformatio in Peius*, for given r_{LAC} , the expected value of the appeal court award is

$$E^{P}(r^{c}|r_{LAC}) = \int_{\underline{r^{c}}}^{r_{LAC}} r_{LAC}f(r^{c})dr + \int_{r_{LAC}}^{\overline{r^{c}}} r^{c}f(r^{c})dr^{c}.$$
 (0.15)

Note that

• for all
$$r_{LAC}$$
, $E^{P}(r^{c}|r_{LAC}) > r_{LAC}$.

• Also, from (0.15) note that $E^{P}(r^{c}|r_{LAC})$ is an increasing function of r_{LAC} .

< ロ > < 同 > < 回 > < 回 >

Prohibition of Reformatio in Peius: Consequences III

Since $E^{P}(r^{c}|r_{LAC})$ is the cost for the executive branch, it will minimize its cost by choosing $r_{LAC} = \underline{r^{c}}$.

Lemma

When the court applies the doctrine of Prohibition of Reformatio in Peius

- **1** The executive award $\underline{r^c} = r_{LAC}^P < r_{LAC}^{NP}$. That is, the executive award is lower under the application of the doctrine.
- 2 There is litigation; the awardee will not accept the executive award.
- Compared to the No-Reformatio in Peius case, both parties are worse off; the outcome is inefficient, due litigation costs.

・ロト ・ 四ト ・ ヨト ・ ヨト …