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Modern Macroeconomics: the Dynamic General
Equilibrium (DGE) Approach

Modern macroeconomics is based on a dynamic general equilibrium
approach which postulates that

Economic agents are continuously optimizing/re-optimizing subject to
their constraints and subject to their information set. They optimize
not only over their current choice variables but also the choices that
would be realized in future.
All agents have rational expectations: thus their ex ante optimal future
choices would ex post turn out to be less than optimal if and only if
their information set is incomplete and/or there are some random
elements in the economy which cannot be anticipated perfectly.
The agents are atomistic is the sense that they treat the market factors
as exogenous in their optimization exercise. The optimal choices of all
agents are then mediated through the markets to produce an
equilibrium outcome for the macroeconomy (which, by construction, is
also consistent with the optimal choice of each agent).
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Modern Macroeconomics: DGE Approach (Contd.)

This approach is ‘dynamic’because agents are making choices over
variables that relate to both present and future.

This approach is ‘equilibrium’because the outcome for the
macro-economy is the aggregation of individuals’equilibrium
(optimal) behaviour.

This approach is ‘general equilibrium’because it simultaneously
takes into account the optimal behaviour of diiferent types of agents
in different markets and ensures that all markets clear.
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Modern Macroeconomics: DGE Approach (Contd.)

The Lucas critique and the consequent logical need to develop a
unified micro-founded macroeconomic framework which would allow
us to accurately predict the macroeconomic outcomes in response to
any external shock (policy-driven or otherwise) led to emergence of
the modern dynamic general equilibrium approach.

As before, there are two variants of modern DGE-based approach:

One is based on the assumption of perfect markets (the
Neoclassical/RBC school). As is expected, this school is critical of any
policy intervention, in particular, monetary policy interventions.
The other one allows for some market imperfections (the
New-Keynesian school). Again, true to their ideological underpinning,
this school argues for active policy intervention.
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Modern Macroeconomics: DGE Approach (Contd.)

However, both frameworks are similar in two fundamental aspects:

Agents optimize over infinte horizon; and
Agents are forward looking, i.e., when they optimize over future
variable they base their expectations on all available information -
including information about (future) government policies. In other
words, agents have rational expectations.

We now develop the choice-theoretic frameworks for households and
firms under the DGE approach.

As before, we shall assume that the economy is populated by H
households with identical preferences.
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Household’s Choice Problem under Perfect Markets:
Infinite Horizon

Let us examine the consumption-savings choices of a household over
infinite horizon when markets are perfect.
To simplify the analysis, we shall only focus on the consumption
choice of the household and ignore the labour-leisure choice (for the
time being).
At any point of time the household is endowed with one unit of
labour - which it supplies inelastically to the market.
We shall also ignore prices and the concomitant role of money and
focus only on the ‘real’variables.
Let aht denote the asset stock of the household at the beginning of
period t.
We shall assume that positive savings by a household in any period are
invested in various forms of assets (all assets have the same return),
which augments the household’s asset stock in the next period.
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Household’s Choice Problem: Infinite Horizon (Contd.)

As we did earlier the two period problem, we now have to similarly
formulate the budget constraints of the household for every time
period t = 0, 1, 2, .........∞.
Recall that at the beginning of any time period t, a household starts
with its given labour endowment (1 unit) and a certain amount of
asset stock aht (carried forward from the past).
The household then offers his labour in the production process to earn
some wage income towards the end of the period.
His stock of assets held at the beginning of the period (aht ) also
generates certain interest returns during the period, denoted by rtaht .
Thus the flow income of the household at time t is given by
yht = wt + rta

h
t .

Moreover, assuming that asset stocks (in particular, physical assets)
get depreciated at a constant rate δ during the producation process,
after the production has taken place, the household would still be in
possesion of the depreciated value of its asset stock (1− δ)aht .
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Household’s Choice Problem: Infinite Horizon (Contd.)

The household now has to decide how much it wants to consume and
how much to save.

If the household is not allowed to borrow, then the consumption of
the household would to be limited by its flow income yht .

But in this one good world, the household also has the option of
eating up its existing asset stocks (which constitutes negative
savings).

Thus the maximum consumption possible in time period t is:
yht + (1− δ)aht .

This defines the feasible consumption set available to the household
at every point of time t as follows:

cht 5 yht + (1− δ)aht for all t = 0, 1, .....∞
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Household’s Choice Problem: Infinite Horizon (Contd.)

The flow income of the household is distributed between consumption
and savings. Thus, by definition:

sht ≡ yht − cht

All savings are invested is buying various new assets, which means the
asset stock of the household at the beginning of next period (period
t + 1) will be

aht+1 = s
h
t + (1− δ)aht

Note that if the household decides to eat up its existing asset stocks
(over and above its flow income) then that will constitute negative
savings and would lower the asset base of the household over time.
Putting all these information together, we write the period by period
budget constraint of the household as

aht+1 = y
h
t − cht + (1− δ)aht for all t = 0, 1, .....∞
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Household’s Choice Problem: Infinite Horizon (Contd.)

In the absence of intra-household borrowing, then the representative
household h’s problem would given by:

Max .
{cht }∞

t=0
,{aht+1}∞

t=0

∞

∑
t=0

βtu
(
cht
)
; u′ > 0; u′′ < 0; 0 < β < 1

subject to

(i) cht 5 wt + rtaht + (1− δ)aht for all t = 0;
(ii) aht+1 = wt + rtaht − cht + (1− δ)aht ; a

h
t = 0 for all t = 0;

where ah0 is historically given.

The atomistic household also treats wt and rt as exogenous.
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Household’s Choice Problem: Infinite Horizon (Contd.)

Households’utility function which is defined over infinite horizon
requires some explanation.
There are three alternative explanation, each associated with a
different interpretaion of the intertemporal discount factor β:

Agents live forever: Then the utility function defines the discounted
values of his ‘life-time’utlity. By this definition, β is to be interpreted
as the agents’innate preference for present vis-a-vis future (or their
rate of time preference);
Each agent lives only for a single period, but in the next period an
exact replica is born who inherits the parent’s tastes and preferences:
Then the utility function defines the weighted sum of the dynastic
utility. By this definition, β is to be interpreted as a measure of the
degree of intergenerational altruism of an agent;
An agent can potentially live for ever but in each period he faces an
exogenous mortality shock which is i.i.d. across time: Then the utility
function defines the expected ‘life-time’utility of an agent. By this
definition, β is the constant probablity of survival from each period to
the next.
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Household’s Choice Problem: Infinite Horizon (Contd.)

In our analysis, we shall use either the first or the second definition
and ignore the ‘expected’utility interpretation (since we do want
want any ‘uncertainty’to affect the households’decision making
process at this stage).
Note that that the household is solving this problem at time 0.
Therefore, in order to solve this problem the households would have
to have some expectation about the entire time paths of wt and rt
from t = 0 to t → ∞.
We shall however assume that households’have rational expectations.
In this model with complete information and no uncertainty, rational
expectation is equivalent to perfect foresight. We shall use these two
terms here interchangeably.
By virtue of the assumption of rational expectations/perfect foresight,
the agents can correctly guess all the future values of the market
wage rate and rental rate, but they still treat them as exogenous.
As atomistic agents, they believe that their action cannot influence
the values of these ‘market’variables.
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Household’s Choice Problem: Infinite Horizon (Contd.)

Notice that once we choose our consumption time path
{
cht
}∞
t=0, the

corresponding time path of the asset level
{
aht+1

}∞
t=0 would

automatically get determined from the constraint functions (and vice
versa).
So in effect in this constrained optimization problem, we only have to
choose one set of variables directly. We call them the control
variables. Let our control variable for this problem be

{
cht
}∞
t=0 .

We can always treat c0, c1, c2,......as independent variables and solve
the problem using the standard Lagrangean method.
The only problem is that there are now infinite number of such choice
variables (c0, c1, c2,....., c∞) as well as infinite number of constraints
(one for each time period from t = 0, 1, 2.....,∞) and things can get
quite intractable.
Instead, we shall employ a different method - called Dynamic
Programming - which simplifies the solution process and reduces it to
a univariate problem.
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Dynamic Optimization in Discrete Time: Dynamic
Programming

Consider the following canonical discrete time dynamic optimization
problem:

Max .
{xt+1}∞

t=0,{yt}
∞
t=0

∞

∑
t=0

βt Ũ (t, xt , yt )

subject to

(i) yt ∈ G̃ (t, xt ) for all t = 0;
(ii) xt+1 = f̃ (t, xt , yt ); xt ∈ X for all t = 0; x0 given.

Here yt is the control variable; xt is the state variable; Ũ represents
the instantaneous payoff function.
(i) specifies what values the control variable yt is allowed to take (the
feasible set), given the value of xt at time t;
(ii) specifies evolution of the state variable as a function of previous
period’s state and control variables (state transition equation).
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Dynamic Programming (Contd.)

It is often convenient to use the state transition equation given by (ii)
to eliminate the control variable and write the dynamic programming
problem in terms of the state variable alone:

Max .
{xt+1}∞

t=0

∞

∑
t=0

βtU (t, xt , xt+1)

subject to

(i) xt+1 ∈ G (t, xt ) for all t = 0; x0 given.
We are going to focus on stationary dynamic programming problems,
where time (t) does not appear as an independent argument in the
objective or constraint function (other than in the discounting term):

Max .
{xt+1}∞

t=0

∞

∑
t=0

βtU (xt , xt+1)

subject to
(i) xt+1 ∈ G (xt ) for all t = 0; x0 given.
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Stationary Dynamic Programming: Value Function

Ideally we should be able to solve the above stationary dyanamic
programming problem by employing the Lagrange method. Let us
assume that such solution exists and is unique. Let

{
x∗t+1

}∞
t=0 denote

the corresponding solution.
Then we should be able to write the maximised value of the objective
function as a function of the parameters alone, in particular as a
function of x0 :

V (x0) ≡ Max .
{xt+1}∞

t=0

∞

∑
t=0

βtU (xt , xt+1) ; xt+1 ∈ G (xt ) for all t = 0;

=
∞

∑
t=0

βtU (x∗t , x
∗
t+1) .

The maximized value of the objective function is called the value
function.
The function V (x0) represents the value function of the dynamic
programming problem at time 0.
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Value Function: (Contd.)

Suppose we were to repeat this exercise again the next period i.,e. at
t = 1.
Now of course the time period t = 1 will be counted as the initial
point and the corresponding initial value of the state variable will be
x∗1 .
Let τ denote the new time subscript which counts time from t = 1 to
∞. By construction then, τ ≡ t − 1.
When we set the new optimization exercise (relevant for
t = 1, 2....,∞) in terms of τ it looks exactly similar to the one deined
in terms of t (except that x∗1 6= x0). In particular, the new value
function will be given by:

V (x∗1 ) ≡ Max .
{xτ+1}∞

τ=0

∞

∑
τ=0

βτU (xτ, xτ+1) ; xτ+1 ∈ G (xτ) for all τ = 0;

=
∞

∑
τ=0

βτU (x∗τ , x
∗
τ+1) .
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Value Function & Principle of Optimality:

It is important to note here that by the Principle of Optimality if{
x∗t+1

}∞
t=0 was an optimal soution to the problem that maximises

Max .
{xt+1}∞

t=0

∞

∑
t=0

βtU (xt , xt+1) (x0 given), (A)

then
{
x∗τ+1

}∞
τ=0 such that x

∗
τ=1 = x

∗
t=2; x

∗
τ=2 = x

∗
t=3, .... must be a

solution to the problem that maximises

Max .
{xτ+1}∞

τ=0

∞

∑
τ=0

βτU (xτ, xτ+1) (xτ=0 = x∗t=1 given). (B)

Otherwise
{
x∗t+1

}∞
t=0 could not have been an optimal solution to

problem (A) to begin with!
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Value Function & Bellman Equation:

Noting the relationship between t and τ, and noting the principle of
optimality, we can immediately see that the two value functions are
related in the following way:

V (x0) =
∞

∑
t=0

βtU (x∗t , x
∗
t+1)

= U (x0, x∗1 ) + β
∞

∑
t=1

βt−1U (x∗t , x
∗
t+1)

= U (x0, x∗1 ) + β
∞

∑
τ=0

βτU (x∗τ , x
∗
τ+1) (by Principle of Optimality)

= U (x0, x∗1 ) + βV (x∗1 ).

The above relationship is the basic functional equation in dynamic
programming which relates two successive value functions recursively.
It is called the Bellman Equation.
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Value Function & Bellman Equation: (Contd.)

Recursive Property:

The Bellman Equation is a recursive equation because it expresses the
value function as a function of itself:

V (x0) = U (x0, x∗1 ) + βV (x∗1 ).
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Value Function & Bellman Equation: (Contd.)

It is important to mention here that this recursive representation of
the value function may work even when
(a) the problem is defined over finite horizon;
(b) the discount factor itself changes over time (βt) (as happens
when, for example, when you have hyperbolic discounting);
(c) the problem is non-stationary.

In all these cases however one has to re-define the problem by
introducing new variables (state or control) which represent these
other time-dependent factors AND re-define the value function to
take into account this extra variables.
Having said that, for the rest of the lectures, we are going to restrict
ourselves to the special case of a stationary infinite horizon
problem with a constant (exponential) discount factor.
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Value Function & Bellman Equation: (Contd.)

The Bellman equation plays a crucial role in the dynammic
programming technique.

Since x∗1 is an optimal value itself, we can write the Bellman equation
as:

V (x0) = Max
x1∈G (x0)

[U (x0, x1) + βV (x1)] ; x0 given.

Notice that it breaks down the inifinite horizon dynamic optimization
problem into a two-stage problem:

Given x0, what is the optimal value of x1;
what is the optimal continuation path (V (x1)).

Thus it reduces the initial optimization problem with infinite number
of variables and infinte number of constraints to a simple optimization
exercise entailing only one variable (x1).
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Value Function & Policy Function (Contd.)

Since the above functional relationship holds for any two successive
values of the state variable,we can write the Bellman Equation more
generally as:

V (xt ) = Max
xt+1∈G (xt )

[U(xt , xt+1) + βV (xt+1)] for all x ∈ X .

Or equivalently:

V (x) = Max
x̃∈G (x )

[U(x , x̃) + βV (x̃)] for all x ∈ X . (1)

The maximizer of the right hand side of equation (2) is called a
policy function:

x̃ = π(x),

which solves the RHS of the Bellman Equation above.
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Value Function & Policy Function (Contd.)

If we knew the exact form of the value function V (.) and were it
differentiable, we could have easily found the policy function by
solving the following FONC (called the Euler Equation):

x̃ :
∂U(x , x̃)

∂x̃
+ βV ′(x̃) = 0. (2)
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Value Function & Policy Function (Contd.)

Unfortunately, the value function is not known!
(Recall that we introduced it as the maximixed value of the objective
function for a ‘hypothetical’solution to the problem. But we had not
really solved the problem. Hence characteristics of this solution and
therefore the characteristics of this value function are not really
known!)
In fact we do not even know whether it exists; if yes then whether it
is unique, whether it is continuous, whether it is differentiable etc.
A lot of theorems in Dynamic Programming go into establishing
conditions under which a value function exists, is unique and has all
the nice properties (continuity, differentibility and others).
For now, without going into futher details, we shall simply assume
that all these conditions are satisfied for our problem.
In other words, we shall assume that for our problem the value
function exists and is well-behaved (even though we do not know
its precise form).
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Value Function & Policy Function (Contd.)

Once the existence of the value function is established (here, by
assumption), we can then solve the FONC (2) (the Euler Equation)
to get the policy function.

But there is still one hurdle: what is the value V ′(x̃)?

Here the Envelope Theorem comes to our rescue.

Das (Lecture Notes, DSE) DGE Approach Jan 29-Feb 22, 2019 26 / 104



Value Function & Policy Function (Contd.)

Recall that V (x̃) is nothing but the value function for the next period
where x̃ is next period’s initial value of the state variable (which is
given - from next period’s perspective).
Since the Bellman equation is defined for all x ∈ X , we therefore get
a similar relationship between x̃ and its subsequent state value (x̂):

V (x̃) = Max
x̂∈G (x̃ )

[U(x̃ , x̂) + βV (x̂)] .

Then applying Envelope Theorem:

V ′(x̃) =
∂U(x̃ , x̂)

∂x̃
. (3)

Combining the Euler Equation (2) and the Envelope Condition (3),
we get the following equation:

∂U(x , x̃)
∂x̃

+ β
∂U(x̃ , x̂)

∂x̃
= 0 for all x ∈ X .
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Value Function & Policy Function (Contd.)

Replacing x , x̃ , x̂ by their suitable time subscripts:

∂U(xt , xt+1)
∂xt+1

+ β
∂U(xt+1, xt+2)

∂xt+1
= 0; x0 given. (4)

Equation (4) is a difference equation which we should be able to solve
to derive the time path of the state variable xt .
Notice that (4) is a difference equation of order 2. However we can
always reduce it to a 2× 2 system of first order difference equations
in the following way:

Define a new variable: zt+1 ≡ xt+2 for all t. Using this definition, we
can now write the above difference equation as:

(i)
∂U(xt , zt )

∂zt
+ β

∂U(zt , zt+1)
∂zt

= 0;

At the same time the definition itself tells us:

(ii) xt+1 = zt

Equations (i) and (ii) represent a 2× 2 system of first order difference
equations in xt and zt .
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Value Function & Policy Function (Contd.)

To solve this 2× 2 system, we need two boundary conditions.
One boundary condition is specified by the given initial value x0 .
Notice however that we do not have any such pre-determined initial
value of the other variable zt . So zt constitutes a ‘jump’variable.

Jump variables are not tethered to any initial condition; often they are
pinned down by a terminal condition.

Typically in a Dynamic Programming problem such a boundary
condition is provided by the following Transversality condition
(TVC):

lim
t→∞

βt
∂U(xt , xt+1)

∂xt
xt = 0. (5)
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Transversality Condition and its Interpretation:

The TVC is to be read as a complementary slackness condition in the
following way:

as t → ∞, if βt
∂U (xt ,xt+1)

∂xt
> 0, then xt = 0;

on the other hand, as t → ∞, if xt > 0, then βt
∂U (xt ,xt+1)

∂xt
= 0

In interpreting the TVC, notice that ∂U (xt ,xt+1)
∂xt

captures the marginal
increment in the pay-off function associated with an increase in the
current stock, or its shadow price.

The TVC states that if (present discounted value of) the shadow
price is positive then at the terminal date, agents will not leave any
stock unused (i.e., would not leave any postive stock at the end of
the period); on the other hand, if any stock indeed remains unused at
the terminal date, then it must be the case that its shadow valuation
is zero.
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Different Methods of Solving a DPP:

There are other ways to solve the Bellman equation and/or the
associated Euler equation:

V (x) = Max
x̃∈G (x )

[U(x , x̃) + βV (x̃)] for all x ∈ X . (Bellman)

x̃ :
∂U(x , x̃)

∂x̃
+ β

∂U(x̃ , x̂)
∂x̃

= 0. (Euler)

One method entails using a ‘guess & verify’approach for the policy
function:

We start with an arbitrary guess about the policy function: x̃ = π(x).
It this is indeed the policy function, then a silimilar relationship must
hold between x̂ and x̃ too: x̂ = π(x̃). Moreover, it this is indeed the
policy function then it must satify the corresponding Euler euqation:

∂U(x ,π(x))
∂π(x)

+ β
∂U(π(x),π(π(x)))

∂π(x)
= 0.

It our ‘trial’function π satisfies the above equation, we are done.
Otherwise, we make another guess.
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Different Methods of Solving a DPP:

Another methos entails using a ‘guess & verify’approach for the value
function itself:

We start with an arbitrary guess about the value function V (x). If it is
indeed the value function, then it must satisfy both the Bellman
equation and the associated Euler equation.
It our ‘trial’function V satisfies these two equations, we are done.
Otherwise, we make another guess.

The ‘guess and verify’method works well as long as you happen to
start with the right ‘guess’. But there is no clear cut, well-specified
way to arrive at the right ‘guess’.

So for most part of our analysis, we shall stick to the difference
equation method.
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Stationary Dynamic Programming: Existence &
Uniqueness of Value Function

We now provide some suffi cient conditions for the Value function of
the above stationary dynamic programming problem to exist, to be
twice continuously differentiable, to be concave etc.
We just state the theorems here without proof. Proofs can be found
in Acemoglu (2009).

1 Let G (x) be non-empty-valued, compact and continuous in all x ∈ X
where X is a compact subset of <. Also let U : XG → < is
continuous, where XG = {(xt , xt+1) ∈ X × X : xt+1 ∈ G (xt )} . Then
there exits a unique and continuous function V : X → < that solves
the stationary dynamic programming problem specified earlier.

2 Let us further assume that U : XG → < is concave and is
continuously differentiable on the interior of its domain XG . Then the
unique value function defined above is strictly concave and is
differentiable.
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Existence & Uniqueness of Value Function: (Contd.)

Having specified these suffi ciency condition (more for the sake of
completeness than delving deeper in terms of actually verifying them),
we are just going to assume that they are satisfied for our problem at
hand.

Indeed, all the economic problems that we would be looking at in this
course will satisfy these suffi ciency properties (although we won’t
prove it here).

So we shall stop bothering about this suffi ceny condition from now on
and focus on applying the dynamic programming technique to the
economic problems at hand.
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Dynamic Programming: Reference

When the optimization problem is non-stationary, the solution
technique is similar. Only the value function will now be
time-dependent.

Corresponding Bellman equation will now be written as:

V (xt , t) = Max
xt+1∈G (xt ,t)

[U (xt , xt+1, t) + βV (xt+1, t + 1)] ; x0 given.

There exist analogous theorems which ensure existence, uniqueness
and differentiability fo the value function for the non-stationary
dynamic programming problem.

Interested students can look up D. Acemoglu (2009): Introduction to
Modern Economic Growth, Chapter 6, for the dynamic programming
technique, associated theorems and proofs.
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Back to Household’s Choice Problem: Infinite Horizon

Let us now go back to the representative household’s optimization
problem under infinite horizon as:

Max .
{cht }∞

t=0
,{aht+1}∞

t=0

∞

∑
t=0

βtu
(
cht
)
; u′ > 0; u′′ < 0

subject to

(i) cht 5 wt + rtaht + (1− δ)aht for all t = 0;
(ii) aht+1 = wt + (1+ rt − δ)aht − cht ; aht = 0 for all t = 0; ah0 given.

However in specifying the problem earlier, we assumed that there is
no intra-household borrowing.
This assumption of no borrowing is too strong, and we do not really
need it for the results that follow.
So let us relax that assumption to allow households to borrow from
one another if they so wish.
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Household’s Choice Problem: Infinite Horizon (Contd.)

Allowing for intra-household borrowings means that constraint (i)
would no longer hold. A household can now consume beyond its
current income at any point of time - by borrowing from others.

Allowing for intra-household borrowings also means that a household
now has at least two forms of assets that it can invest its savings into:

1 physical capital (kht );
2 financial capital, i.e., lending to other households (lht ≡ −bht ).

Let the gross interest rate on financial assets be denoted by (1+ r̂t ) .

Let physical capital depreciate at a constant rate δ. Then the gross
interest rate on investment in physical capital is given by (rt + 1− δ) .
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Household’s Choice Problem: Infinite Horizon (Contd.)

Arbitrage in the asset market ensures that in equlibrium two interest
rates are the same :

1+ r̂t = 1+ rt − δ⇒ r̂t = rt − δ.

Thus we can define the total asset stock held by the household in
period t as aht ≡ kht + lht .
Notice that lht < 0 would imply that the household is a net borrower.

Hence the aggregate budget constraint of the household is now given
by:

cht + s
h
t = wt + r̂ta

h
t , where s

h
t ≡ aht+1 − aht .

Re-writing to eliminate sht :

aht+1 = wt + (1+ r̂t )a
h
t − cht .
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Household’s Choice Problem: Ponzi Game

But allowing for intra-household borrowing brings in the possibility of
households’playing a Ponzi game, as explained below.
Consider the following plan by a household:

Suppose in period 0, the household borrows a huge amount b̄ - which
would allow him to maintain a very high level of consumption at all
subsequent points of time. Thus

b0 = b̄.

In the next period (period 1) he pays back his period 0 debt with
interest by borrowing again (presumably from a different lender). Thus
his period 1 borrowing would be:

b1 = (1+ r̂0)b0.

In period 2 he again pays back his period 1 debt with interest by
borrowing afresh:

b2 = (1+ r̂1)b1 = (1+ r̂1)(1+ r̂0)b0.

and so on.
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Household’s Choice Problem: Ponzi Game (Contd.)

Notice that proceeding this way, the household effectively never pays
back its initial loan b̄; he is simply rolling it over period after period.
In the process he is able to perpetually maintain an arbitrarily high
level of consumption (over and above his current income).
His debt however grows at the rate r̂t :

bt+1 = (1+ r̂t )bt

which implies that lim
t→∞

aht ' − limt→∞
bht → −∞.

This kind scheme is called a Ponzi finance scheme.
If a household is allowed to play such a Ponzi game, then the
household’s budget constraint becomes meaningless. There is
effectively no budget constraint for the household any more; it can
maintain any arbitrarily high consumption path by playing a Ponzi
game.
To rule this out, we impose an additional constraint on the
household’s optimization problem - called the No-Ponzi Game
Condition.
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Household’s Choice Problem: No-Ponzi Game Condition

One Version of No-Ponzi Game (NPG) Condition:

lim
t→∞

aht
(1+ r̂0)(1+ r̂1)......(1+ r̂t−1)

= 0.

This No-Ponzi Game condition states that as t → ∞, the present
discounted value of an household’s asset must be non-negative.
Notice that the above condition rules out Ponzi finance scheme for
sure.

If you play Ponzi game then lim
t→∞

aht ' − lim
t→∞

bht , when the latter term

is growing at the rate (1+ r̂t ).
For simplicity, let us assume interest rate is constant at some r̄ . Then
bht = (1+ r̄)

t b̄.
Plugging this in the LHS of the NPG condition above:

lim
t→∞

aht
(1+ r̄)t

' lim
t→∞

(−bht )
(1+ r̄)t

= lim
t→∞

−(1+ r̄)t b̄
(1+ r̄)t

= −b̄ < 0.

This surely violates the NPG condition specified above.
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Household’s Choice Problem: No-Ponzi Game Condition
(Contd.)

At the same time the NPG condition specified above is lenient enough
to allow for some amount of perpetual borrowing throughout one’s
life time as long as borrowing grows at a rate less than the
corresponding interest rate.
To see this, suppose the household’s borrowing is growing at some
rate ḡ < r̄ such that

bht = (1+ ḡ)
t b̄.

Plugging this in the LHS of the NPG condition above:

lim
t→∞

aht
(1+ r̄)t

' lim
t→∞

(−bht )
(1+ r̄)t

= lim
t→∞

−(1+ ḡ)t b̄
(1+ r̄)t

= −b̄ lim
t→∞

(
1+ ḡ
1+ r̄

)t
.

Notice that ḡ < r̄ implies that the term
(
1+ ḡ
1+ r̄

)
is a positive

fraction and as t → ∞,
(
1+ḡ
1+r̄

)t
→ 0.

Das (Lecture Notes, DSE) DGE Approach Jan 29-Feb 22, 2019 42 / 104



Household’s Choice Problem: No-Ponzi Game Condition
(Contd.)

Since b̄ is finite, this implies that in this case

lim
t→∞

aht
(1+ r̄)t

→ 0.

In other words, the NPG condition is now satisfied at the margin!

In terms of Economics, this kind of borrowing behaviour implies that
the agent in not completely recycling his entire accumulated debt
(principle + interest): at some point the agent must have started
repaying at least some part of it (though not all) from his own pocket!
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Household’s Choice Problem - Revisited:

After imposing the No-Ponzi Game condition, the household’
optimization problem now becomes:

Max .
{cht }∞

t=0
,{aht+1}∞

t=0

∞

∑
t=0

βtu
(
cht
)

subject to

(i) aht+1 = wt + (1+ r̂t )aht − cht ; aht ∈ < for all t = 0; ah0 given.
(ii) The NPG condition.

Here cht is the control variable and a
h
t is the state variable.
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Household’s Choice Problem - Revisited: (Contd.)

We can now apply the dynamic programming technique to solve the
household’s choice problem.

First let us use constraint (i) to eliminate the control variable and
write the above dynamic programming problem in terms of the state
variable alone:

Max .
{aht+1}∞

t=0

∞

∑
t=0

βtu
({
wt + (1+ r̂t )aht − aht+1

})
Corresponding Bellman equation relating V (ah0) and V (a

h
1) is given

by:

V (ah0) = Max{ah1}

[
u
({
w0 + (1+ r̂0)ah0 − ah1

})
+ βV (ah1)

]
.
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Household’s Problem: Bellman Equation

More generally, we can write the Bellman equation for any two time
periods t and t + 1 as:

V (aht ) = Max
{aht+1}

[
u
({
wt + (1+ r̂t )aht − aht+1

})
+ βV (aht+1)

]
.

Maximising the RHS above with respect to aht+1, from the FONC:

u′
({
wt + (1+ r̂t )aht − aht+1

})
= βV ′(aht+1) (6)

Notice that V (aht+1) and V (a
h
t+2) would be related through a similar

Bellman equation:

V (aht+1) = Max
{aht+2}

[
u
({
wt+1 + (1+ r̂t+1)aht+1 − aht+2

})
+ βV (aht+2)

]
.

Applying Envelope Theorem on the latter:

V ′(aht+1) = u
′
({
wt+1 + (1+ r̂t+1)aht+1 − aht+2

})
.(1+ r̂t+1). (7)
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Household’s Problem: Optimal Solutions

Combining (5) and (6):

u′
({
wt + (1+ r̂t )aht − aht+1

})
= βu′

({
wt+1 + (1+ r̂t+1)aht+1 − aht+2

})
(1+ r̂t+1).

The above equation implicitely defines a 2nd order difference equation
is aht .

However we can easily convert it into a 2× 2 system of first order
difference equations in the following way.
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Household’s Problem: Optimal Solutions (Contd.)

Noting that the terms inside the u′(.) functions are nothing but cht
and cht+1 respectively, we can write the above equation as:

u′
(
cht
)
= βu′

(
cht+1

)
(1+ r̂t+1). (8)

We also have the constraint function:

aht+1 = wt + (1+ r̂t )a
h
t − cht ; ah0 given. (9)

Equations (8) and (9) represents a 2× 2 system of difference
equations which implicitly defines the ‘optimal’trajectories

{
cht
}∞
t=0

and
{
aht+1

}∞
t=0.

The two boundary conditons are given by the initial condition ah0 , and
the NPG condition.
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Household’s Problem: Optimal Solutions (Contd.)

If you knew how to solve a 2× 2 system of difference equation, you
would have been able to characterise the solution paths for

{
cht
}∞
t=0

and
{
aht+1

}∞
t=0 from the above two dynamic equations and associated

boundary conditions.

The precise mathematical techniques for solving difference/differential
equations is taught in parallel extra lectures (tutorials) for the course.

At this point, let us try to characterise the dynamic paths for a simple
example.

We take use this example to highlight various interesting features of
the optimal solution, which will later be substantiated for the more
general case using rigorous mathematical techniques.
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Optimal Solution Path to Household’s Problem: An
Example

Let us look at the explicit characterization of the household’s optimal
paths for the following specific example.
Suppose

u(c) = log c

To further simplify things, let us also assume that wt = w̄ and r̂t = r̄
for all t .
Then we can immediately get two difference equations characterizing
the optimal trajectories for the household as:

cht+1 = β(1+ r̄)cht (10)

and
aht+1 = w̄ + (1+ r̄)a

h
t − cht ; ah0 given. (11)

The two equations along with the two boundary conditons can be
solved explicitly to derive the time paths of cht and a

h
t .
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Household’s Problem: An Example - Optimal Solutions
(Contd.)

Equation (9) is a linear autonomous difference equation, which can be
directly solved (by iterating backwards) to get the optimal
consumption path as:

cht = β(1+ r̄)cht−1

= β(1+ r̄)
[

β(1+ r̄)cht−2
]
= β2(1+ r̄)2cht−2

= β2(1+ r̄)2
[

β(1+ r̄)cht−3
]
= β3(1+ r̄)3cht−3

= .............................

= βt (1+ r̄)tch0 . (12)

However,we still cannot completely characterise the optimal path
because we still do not know the optimal value of ch0 . (Recall that c

h
0

is not given; it is to be chosen optimally).
Here the NPG condition comes in handy in identifying the optimal ch0 .
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Household’s Problem: An Example - Role of the NPG
Condition

Note that the NPG condition in this case is given by:

lim
t→∞

aht
(1+ r̄)t

= 0.

Now let us look at asset accumulation equation at some future date
T > 0:

ahT+1 = w̄ + (1+ r̄)a
h
T − chT .

Iterating backwards,

ahT+1 = w̄ + (1+ r̄)ahT − chT
= w̄ + (1+ r̄)

[
w̄ + (1+ r̄)ahT−1 − chT−1

]
− chT

= ....

=
T

∑
t=0

(
w̄(1+ r̄)T−t

)
−

T

∑
t=0

(
cht (1+ r̄)

T−t
)
+ (1+ r̄)T+1ah0 .
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Household’s Problem: An Example - Role of the NPG
Condition (Contd.)

Rearranging terms:

ahT+1
(1+ r)T

=
T

∑
t=0

(
w̄

(1+ r̄)t

)
+ (1+ r̄)ah0 −

T

∑
t=0

(
cht

(1+ r̄)t

)
Now let T → ∞. Then applying the NPG condition to the LHS, we
get:

∞

∑
t=0

(
w̄

(1+ r̄)t

)
+ (1+ r̄)ah0 −

∞

∑
t=0

(
cht

(1+ r̄)t

)
= 0

i.e.,
∞

∑
t=0

(
cht

(1+ r̄)t

)
5

∞

∑
t=0

(
w̄

(1+ r̄)t

)
+ (1+ r̄)ah0 . (13)

Equation (13) represents the lifetime budget constraint of the
household. It states that when the NPG condition is satisfied, then
the discounted life-time consumption stream of the household cannot
exceed the sum-total of its discounted life-time wage earnings and the
returns on its initial wealth holding.
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Household’s Problem: An Example - Role of the NPG
Condition (Contd.)

From the above equation, it is easy to see that even though we have
specified the NPG condition in the form of an inequality, the
households would always satisfy it at the margin such that it holds
with strict equality.

Since the marginal utility of consumption is positive, facing the lifetime
budget constraint (as represented by equation (13)), they would
optimally choose a life-time consumption stream that completely
exhausts the RHS of the above equation.
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Household’s Problem: An Example - Role of the NPG
Condition (Contd.)

Given that equation (13) holds with strict equality, we can now
identify the optimal value of ch0 .
We had already derived the optimal time path of cht as:

cht = βt (1+ r̄)tch0 .

Using this in equation (13) above, we get:
∞

∑
t=0

(
βt (1+ r̄)tch0
(1+ r̄)t

)
=

∞

∑
t=0

(
w̄

(1+ r̄)t

)
+ (1+ r̄)ah0

⇒
∞

∑
t=0

(
βt
)
ch0 =

[
∞

∑
t=0

(
w̄

(1+ r̄)t

)
+ (1+ r̄)ah0

]

⇒ ch0 = (1− β)

[
∞

∑
t=0

(
w̄

(1+ r̄)t

)
+ (1+ r̄)ah0

]
.
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Household’s Problem: An Example - Role of the NPG
Condition (Contd.)

Thus using the NPG condition we have now been able to completely
characterize the optimal consumption path of the household
(including the optimal value of the initial consumption level ch0 ) for
this example.
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Household’s Problem: An Example - NPG vis-a-vis TVC

So for this particular example, we have been able to explicitly solve
for the optimal consumption path of the households.

But there is a problem that we still need to sort out.

Recall that while discussing the dynamic programming problem we
had specified a transversality condition (TVC) as one of our boundary
condition (Refer to equation (5) specified earlier).

Then in defining the household’s problem with intra-household
borrowing, we have introduced the NPG condition as another
boundary condition.

So we now have a problem of plenty: for a 2× 2 dynamic system, it
seems that we have three boundary conditions!!!

Between the TVC and the NPG condition, which one should we use
to characterise the solution?

As it turns out, along the optimal path the NPG condition and the
TVC become equivalent.
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Household’s Problem: NPG vis-a-vis TVC (Contd.)

To see this, let us take a closer look at the TVC as had been specified
earlier in equation (5):

lim
t→∞

βt
∂U(xt , xt+1)

∂xt
xt = 0.

In the context of the current problem of households’utility
maximization exercise, this transversality condition would look as
follows (verify this):

lim
t→∞

βtu′(cht )(1+ r̂t )a
h
t = 0

For our specific example with log utility and constant factor prices,
this condition reduces to

lim
t→∞

βt
1
cht
(1+ r̄)aht = 0
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Household’s Problem: An Example - NPG vis-a-vis TVC
(Contd.)

Given the solution path of cht : cht = βt (1+ r̄)tch0 , we can further
simplify the above condition to:

lim
t→∞

βt
1

βt (1+ r̄)tch0
(1+ r̄)aht = 0

⇒ lim
t→∞

aht
(1+ r̄)t

= 0 (since ch0 is finite)

But this is nothing but our earlier NPG condition - holding with strict
equality!
Thus when the household is on its optimal path, the NPG condition
and the Transversality condition become equivalent - except that the
NPG condition must hold with equality.
So in identifying the optimal trajectories, we could use either of them
as the relevant boundary condition.
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Household’s Problem with Heterogenous Agents: Does
Heterogeneity Matter?

Recall that we have assumed that all households are identical in terms
of their preferences, but not necessarily in terms of their initial asset
holding.

In fact if all households were indeed identical in every respect, then
allowing for intra-household borrowing and the consequent NPG
condition would not have made sense: one side of the
borrowing/lending market would always be missing and hence no
borrowing or lending would ever take place.

All the above conditions make sense only if households are
heterogenous.

So if households are preference-wise identical but differ in terms of
their intial wealth, where does this heterogeneity show up?
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Household’s Problem: Does Heterogeneity Matter?
(Contd.)

To see how heterogeneity matters, let us now go back to our earlier
example of log utility and constant factor returns.
We have already seen that the dynamic equation for a household’s
optimal consumption path is given by:

cht+1 = β(1+ r̄)cht

Thus any household with an initial wealth level of ah0 will have the
following optimal consumption path:

cht = βt (1+ r̄)tch0 .

where

ch0 = (1− β)

[
∞

∑
t=0

(
w̄

(1+ r̄)t

)
+ (1+ r̄)ah0

]
.

Notice that the rate of growth of consumption along the optimal path
is given by β(1+ r̄)− 1, which is independent of the initial wealth!
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Household’s Problem: Does Heterogeneity Matter?
(Contd.)

Thus along the optimal path, consumption of all households grow at
the same rate - irrespective of their initial wealth.

The initial wealth only determines the level of optimal consumption:
higher initial wealth means higher level of consumption.

This is a striking result because it tells us that the initial wealth has
no growth effect, only level effect.
It also tells us that when all households are following their respective
optimal trajectories, the initial (relative) inequality in consumption
will be maintained perpetually.
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Household’s Problem: Does Heterogeneity Matter?
(Contd.)

What about the growth rate of asset stocks of various households?

Note that we should be able to solve for the time path of aht (given
ah0) by solving the following dynamic equation:

aht+1 = w̄ + (1+ r̄)a
h
t − [β(1+ r̄)]

t ch0

This is a difference equation which linear but non-autonomous;
solving this would require more elaborate technique than mere
backward induction.

We shall come back to this equation, or a more general form of this
equation, later.
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Household’s Problem: Does Heterogeneity Matter?
(Contd.)

All these results are of course derived under the assumption of
constant factor returns. When factor returns (wt and r̂t) are changing
over time, the consumption growth rate itself will change.
Nonetheless, we can easily generalize the results to such
non-autonomous cases. In fact all the results will go through. It is
only that the dynamic equations and the associated boundary
conditions will now be given by:

cht+1 = β(1+ r̂t+1)cht ;

aht+1 = wt + (1+ r̂t − δ)aht − cht

ah0 given; limt→∞

aht
(1+ r̂0)(1+ r̂1)(1+ r̂2)...(1+ r̂t )

= 0

To precisely characterise the dynamic paths fo this general cases, we
need more information about the precise time paths of wt and r̂t ,
which means we shall have to discuss the production side story.
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Household’s Problem: Does Heterogeneity Matter?
(Contd.)

But before we move on to the production side story, we should
mention something about the chracteristics of the utility function.

Notice that in deriving all these above results, we have also made use
of the log utility, which we know is special.

Can we generalize these results to other utility functions as well?

It turns out, all the results will go through for a broad class of utility
functions called the CRRA variety:

u(c) =
c1−σ

1− σ
; σ 6= 1.
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Household’s Problem: Does Heterogeneity Matter?
(Contd.)

This utility function has several interesting characteristics:

1 It is associated with constant elasticity of marginal utility:
−cu′′(c)
u′(c)

= σ

2 It is associated with constant relative risk aversion (as defined by the

Arrow-Pratt measure of relative risk aversion):
−cu′′(c)
u′(c)

= σ

3 It is associated with constant elasticity of substitution between

current and future consumption:
−d

(
ct+1
ct

)
/
(
ct+1
ct

)
d
(
u ′(ct+1)
u ′(ct )

)
/
(
u ′(ct+1)
u ′(ct )

) = 1
σ

In fact u(c) = log c is a special case of this particular class of CRRA

utility functions. It can be shown that as σ→ 1,
c1−σ

1− σ
→ log c .
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Household’s Problem: Does Heterogeneity Matter?
(Contd.)

An Exercise: Assume that wages and interest rates are constant and
use the dynamic programming technique to derive the dynamic
equation for the optimal consumption path of an agent with an initial
asset stock of ah0 , when his utility function is of the CRRA variety, as
defined above.
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Production Side Story: Optimal Decisions of Firms

Typically we do not think of the firm’s choice problem as a dynamic
one.

In a perfectly competitive set up, the firm is a blackbox: it does not
own any factors of production and merely decides how much labour
to employ and how much capital to hire in every period so as to
maximise its current profit (taking all prices as given).

Since firms under perfect competition do not earn any positive profit,
the question of investing in activities that may augment future profit
does not arise.

Thus the choice problem of a firm is essentially static - same as what
we discussed earlier (in topic 2 on Microfoundations), the only
difference being now that firm optimally chooses both how much
labour to employ as well as how much capital to rent in.
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Production Side Story: (Contd.)

Consider M number of firms, each having access to an identical
production technology.

Each firm produces a final commodity in every period using a
production function:

Y it = F (N
i
t ,K

i
t ).

All the Neoclassical properties of the production function specified
previously are assumed to hold - including diminishing marginal
products, Inada Conditions and CRS.

The perfectly comptetitive firm takes all the prices as given, and its
optimal choice of labour and capital comes out of the following static
optimization exercise:

Max .
{N it ,K it}

πit = Y
i
t − wtN it − rtK it
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Production Side Story: (Contd.)

Corresponding FONCs:

FN (N
i
t ,K

i
t ) = wt ;

FK (N
i
t ,K

i
t ) = rt .

If the firm is asked to repeat this exercise in the next period (i.e., in
period t + 1), it will choose its optimal employment of N it+1 and
K it+1 in the same fashion such that

FN (N
i
t+1,K

i
t+1) = wt+1;

FK (N
i
t+1,K

i
t+1) = rt+1.

Thus in every period, the firm will employ capital and labour so as to
equate the respective marginal products with the corresponding factor
prices (in real terms) at that time period.
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Firms’Optimal Choices: Static vis-a-vis Dynamic

In the above analysis, we have set up the problem of the firm as a
static problem.

But the analysis would not change even if we think of this as a
dynamic problem - carried over infinite horizon.

As long as such hiring decisions do not affect future profits, setting
the optimization problem in a dynamic framework (i.e., optimizing
over multiple time periods) does not bring in any extra insight over
the static optimization problem.

The firms will have meaningful dynamic choices if and only if we
allow a firm to own the capital stock that it employ; then it will be
interested in investing part of its current income/pay off/profit in
augmenting its capital stock which will affect its future profitability.

But in the present set up where the entire capital stock is owned by
the households, this issue does not arise.
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Bringing Households and Firms Together: The General
Equilibrium Set Up

So far we have looked at the households’problem and the firms’
problem in isolation.

Both sets of agents were assumed to be ‘atomistic’; they take all the
market variables as exogenously given.

But in the aggregate economy, the market variables are not
exogenous; they are determined precisely by the aggregate actions of
the households and the firms.

So we now consider the general equilibrium set up where the
households’and the firms’actions are mediated through the market
to generate some aggregative behaviour for the entire macroeconomy.

The corresponding solution for the aggregate economy will be called
the ‘decentralized’or ‘market’equilibrium solution (as opposed to an
alternative scenario where production is centralized under a social
planner).
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General Equilibrium in the Decentralized Market Economy:

Let us quickly revisit the household and firm specifications for this
de-centralized market economy:

We have H single-membered households which are identical in terms of
preferences but differ in terms of their initial asset holdings;
Each household is endowed with one unit of labour - which it supplies
inelastically to the market in every period (there is no population
growth);
Households are atomistic and take the market wage rate (wt ) and
market the interest rate (rt ) (and the corresponding net interest rate,
r̂t = rt − δ) as given. But they are endowed with perfect foresight - so
they can correctly guess the entire stream of current & future wage
rates {wt}t=∞

t=0 , as well as the current & future interest rates {rt}
t=∞
t=0 .

The households own the entire labour and the capital stock in the
economy. In addition, they also hold loans against one another.
Each household maximises its lifetime utility subject to its period by
period budget constraint.
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General Equilibrium: Decentralized Market Economy
(Contd.)

On the production side:

There are M identical firms endowed with a technology to produce the
final commodity.
The technology uses capital and labour as inputs; it exhibits
diminishing returns with respect to each of the inputs; it is also CRS in
both the inputs.
The firms do not own any capital or labour; they hire labour and
capital from the market to carry out production in each period.
The firms operate under perfect competetion; they take the market
wage rate (wt ) and market the interest rate (rt ) as given.
The firms optimally decide about how much labour/capital to employ
in every period so as to maximise its period-by-period profit.
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General Equilibrium: Decentralized Market Economy
(Contd.)

For expositional simplicity, we shall assume specific functional forms
for the utility function and the production function. Accordingly, let

u(c) = log c

and
Yt = F (Kt ,Nt ) = (Kt )α(Nt )1−α; 0 < α < 1.
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General Equilibrium: Decentralized Market Economy
(Contd.)

The optimization problem of a household h with an initial asset
holding of ah0 is given by:

Max .
{cht }∞

t=0
,{aht+1}∞

t=0

∞

∑
t=0

βt log
(
cht
)

subject to

aht+1 = wt + (1+ r̂t )a
h
t − cht ; aht = 0 for all t = 0; ah0 given.

Characterization of the optimal paths:

cht+1 = β(1+ r̂t+1)cht ; (14)

aht+1 = wt + (1+ r̂t )a
h
t − cht ; (15)

ah0 given; limt→∞

aht
(1+ r̂0)(1+ r̂1)......(1+ r̂t )

= 0 (NPG/TVC).
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General Equilibrium: Decentralized Market Economy
(Contd.)

While one can potentially solve for the optimal paths for each
household, in a Macro course we are actually interested in tracking
the aggregate economy.
For this purpose, define per capita consumption and per capita asset
holding in this economy as:

ct ≡

H

∑
h=1

cht

H
; at ≡

H

∑
h=1

aht

H
.

Recall that households hold their assets in the form of either physical
capital or financial capital (loans) such that

at ≡

H

∑
h=1

aht

H
=

H

∑
h=1

(kht + l
h
t )

H
=

H

∑
h=1

kht

H
+

H

∑
h=1

lht

H
.
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General Equilibrium: Decentralized Market Economy
(Contd.)

Since one household’s lending is another household’s borrowing, on

the aggregate

H

∑
h=1

lht

H
= 0.

Thus,

at ≡

H

∑
h=1

aht

H
=

H

∑
h=1

kht

H
≡ kt ,

where kt denotes the per capita capital stock in the economy.

Das (Lecture Notes, DSE) DGE Approach Jan 29-Feb 22, 2019 78 / 104



General Equilibrium: Decentralized Market Economy
(Contd.)

Notice that the individual optimal transition equations (14 & 15) can
be used to derive the transition equations for the per capita
consumption and per capita capital stock of the economy in the
following way:

ct+1 ≡

H

∑
h=1

cht+1

H
=

H

∑
h=1

β(1+ r̂t+1)cht

H
= β(1+ r̂t+1)

H

∑
h=1

cht

H

= β(1+ r̂t+1)ct
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General Equilibrium: Decentralized Market Economy
(Contd.)

On the other hand,

kt+1 = at+1 ≡

H

∑
h=1

aht+1

H
=

H

∑
h=1

[
wt + (1+ r̂t )aht − cht

]
H

=

H

∑
h=1

wt

H
+ (1+ r̂t )

H

∑
h=1

aht

H
−

H

∑
h=1

cht

H
= wt + (1+ r̂t )kt − ct .

Finally, the individual boundary conditions can also be aggregated
over all H households to get the boundary conditions for kt as:

k0 given; lim
t→∞

kt
(1+ r̂0)(1+ r̂1)......(1+ r̂t )

= 0
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General Equilibrium: Decentralized Market Economy
(Contd.)

We have now derived the transition equations of the per capita
consumption and per capita capital stock for the aggregative
economy - except that we still do not know the precise values of the
market wage rate (wt ) and the net interest rate ( r̂t = rt − δ).
These factor prices are determined in the market by the demand and
supply of labour and capital respectively.
At any time period t, total supply of capital (coming from all the
households) is given by:

KSt =
H

∑
h=1

kht = H.kt

Likewise, total supply of labour (coming from all the households) is
given by:

NSt = H

The demand for these factors on the other hand comes from the firms.
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General Equilibrium: Decentralized Market Economy
(Contd.)

At any point of time t, the profit maximization problem of a firm i is
given by:

Max .
N it ,K

i
t

[
(K it )

α(N it )
1−α − wtN it − rtK it

]
.

Corresponding FONCs:

(1− α)(K it )
α(N it )

−α = wt

⇒ (1− α)

(
K it
N it

)α

= wt (16)

α(K it )
α−1(N it )

1−α = rt

⇒ α

(
K it
N it

)α−1
= rt (17)
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General Equilibrium: Decentralized Market Economy
(Contd.)

From the above optimality conditions, we can immediately see that

facing any (wt , rt) combination, a firm will choose its optimal
K it
N it

such that the following holds:

(1− α)
(
K it
N it

)α

α
(
K it
N it

)α−1 =
wt
rt

i.e.,
(
K it
N it

)
=

α

1− α

(
wt
rt

)
And this would be true for all firms i = 1, 2, ....M.
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General Equilibrium: Decentralized Market Economy
(Contd.)

Since all firms are endowed with identical technologies and face the
same market-determined factor prices, they all employ the same
amount of capital and labour, so that the aggregate demand for
labour and capital respectively are given by:

KDt =
M

∑
i=1
K it = M.K

i
t

NDt =
M

∑
i=1
N it = M.N

i
t
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General Equilibrium: Decentralized Market Economy
(Contd.)

Equilibrium in the factor market requires that:

KSt = K
D
t and NSt = N

D
t .

In other words, factor market clearing conditions are given by:

H.kt = M.K it
H = M.N it

}
where

K it
N it
=

α

1− α

(
wt
rt

)
Writing in ratio terms, factor market clearing condition requires that:

kt =
K it
N it
=

α

1− α

(
wt
rt

)
(18)

Thus for any historically given per capita capital stock for the
aggregate economy (kt), we can find out the corresponding market

clearing wage-rental ratio
(
wt
rt

)
from the above equation.

But we still don’t know the exact values of wt and rt .
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General Equilibrium: Decentralized Market Economy
(Contd.)

But those are easy to derive. The above market clearing condition

also tells us that in the market equilibrium kt =
K it
N it
.

The only wt are rt which are consistent with this reduced form market
clearing condition would be the ones that we obtain by solving
equations (16) and (17) when we substitute K it

N it
by kt :

(1− α) (kt )
α = wt ; α (kt )

α−1 = rt . (19)

For any historically given kt , the wt and rt will adjust in every period
to maintain the above two equalities. Thus we have precisely
identified the market determined values of wt and rt in every period
as a function of the historically given per capita capita stock (which is
also the equilibrium capital-labour ratio employed by each firm).
We now use these information to completely characterise the dynamic
paths for the aggregative economy.
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General Equilibrium: Decentralized Market Economy
(Contd.)

Recall the dynamic equations for ct and kt :

ct+1 = β(1+ r̂t+1)ct ;

kt+1 = wt + (1+ r̂t )kt − ct .
Noting that r̂t = rt − δ, and replacing the market clearing values of
wt and rt derived above, we get:

ct+1 = β
[
1+ α (kt+1)

α−1 − δ
]
ct ; (I)

kt+1 = (1− α) (kt )
α +

[
1+ α (kt )

α−1 − δ
]
kt − ct

⇒ kt+1 = (kt )
α + (1− δ) kt − ct . (II)

These two equations along with the two boundary conditions (initial
k0 and the NPG/TVC) will completely characterize the evolution of
per capita consumption and per capita capital stock for this
decentralized economy.
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General Equilibrium: The Social Planner’s Problem

So far, we have analysed the general equilibrium problem from the
perspective of a perfectly competitive market economy where
‘atomistic’households and firms take optimal decisions in their
respective individual spheres treating market variables as given (the
de-centralized version).
Alternatively, we can analyse the problem from the perspective of a
social planner, who controls all the resources (capital) and carries out
production in a centralized production unit using the services of its
citizens and distributes a part of the total produce directly to the
citizens at the end of the period for consumption and invests the rest
(the centralized version).
It is assumed that the social planner is omniscient, omnipotent and
benevolent who wants to maximise citizens’welfare. Since
households have identical preferences, the objective function of the
social planner is identical to that of any household:

Max .U0 =
∞

∑
t=0

βtu (ct ) . (20)
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General Equilibrium: Centralized Version (Contd.)

The social planner maximises (20) subject to its period by period
budget constraint.

Notice that in a centrally planned economy there are no markets
(hence no market wage rate or market rental rate), and there is no
private ownership of assets (capital) and no personalized income.

The social planner employs the existing capital stock in the economy
(either collectively owned or owned by the planner/government) and
the existing labour force to produce the final output -using the
aggregate production technology.

After production it distributes a part of the total output among its
citizens for consumption puoposes and invests the rest.

Thus the budget constraint faced by the planner in any period t is
nothing but the aggregate resource constraint:

Ct + It = Yt = F (Kt ,Nt ).
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General Equilibrium: Centralized Version (Contd.)

Investment augments next period’s capital stock:
Kt+1 = It + (1− δ)Kt .
Thus the budget constraint faced by the planner in period t can be
written as:

Ct +Kt+1 = F (Kt ,Nt ) + (1− δ)Kt .

Writing in per capita terms (since there is no population growth):

ct + kt+1 = f (kt ) + (1− δ)kt .

Thus the dynamic optimization problem of the social planner is:

Max .
{ct}∞

t=0,{kt+1}
∞
t=0

∞

∑
t=0

βtu (ct )

subject to

(i) ct 5 f (kt ) + (1− δ)kt for all t = 0;
(ii) kt+1 = f (kt ) + (1− δ)kt − ct ; kt = 0 for all t = 0; k0 given.
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General Equilibrium: Centralized Version (Contd.)

In the earlier part of the lecture, we discussed various theorems
related to a stationary dynamic programming problem.

Indeed the social planner’s problem in a centralized economy is a
stationary dynamic programming problem.

Recall that the social planner’s problem is given by:

Max .
{ct}∞

t=0,{kt+1}
∞
t=0

∞

∑
t=0

βtu (ct )

subject to

(i) ct 5 f (kt ) + (1− δ)kt for all t = 0;
(ii) kt+1 = f (kt ) + (1− δ)kt − ct ; kt = 0 for all t = 0; k0 given.

Here ct is the control variable; kt is the state variable, and the
corresponding state space is given by <+.
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General Equilibrium: Centralized Version (Contd.)

As before, we can use constraint (ii) to eliminate the control variable
and write the dynamic programming problem in terms of the state
variable alone:

Max .
{kt+1}∞

t=0

∞

∑
t=0

βtu (f (kt ) + (1− δ)kt − kt+1)

subject to
(i) kt+1 = 0 for all t = 0; k0 given.

This now looks exactly like the canonical stationary dynamic
programming problem that we had seen earlier.

We write the corresponding Bellman equation relating the two value
functions V (k0) and V (k1) as:

V (k0) = Max
{k1}

[u ({f (k0) + (1− δ)k0 − k1}) + βV (k1)] .
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General Equilibrium: Centralized Version (Contd.)

More generally, we can write the Bellman equation for any two time
periods t and t + 1 as:

V (kt ) = Max
{kt+1}

[u ({f (kt ) + (1− δ)kt − kt+1}) + βV (kt+1)] .

Maximising the RHS above with respect to kt+1, we get the FONC as:

u′ ({f (kt ) + (1− δ)kt − kt+1}) = βV ′(kt+1) (21)

Noting that V (kt+1) and V (kt+2) would be related through a similar
Bellman equation and applying Envelope Theorem on the latter:

V ′(kt+1) = u′ ({f (kt+1) + (1− δ)kt+1 − kt+2})[
f ′(kt+1) + (1− δ)

]
(22)

Combining (26) and (27):

u′ ({f (kt ) + (1− δ)kt − kt+1})
= βu′ ({f (kt+1) + (1− δ)kt+1 − kt+2})

[
f ′(kt+1) + (1− δ)

]
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General Equilibrium: Centralized Version (Contd.)

Now bringing back the control variable (using the constraint (ii)
again), we get the FONC of the social planner’s optimization problem
as:

u′ (ct ) = βu′ (ct+1)
[
f ′(kt+1) + (1− δ)

]
. (23)

We also have the constraint function:

kt+1 = f (kt ) + (1− δ)kt − ct ; k0 given. (24)

Equations (28) and (29) represent a 2× 2 system of difference
equations which (along with the two boundary conditions) implicitly
define the ‘optimal’trajectories of ct and kt in this centralized
economy.
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General Equilibrium: Centralized Version (Contd.)

For expositional simplicity, let us assume specific functional forms for
the utility function and the production function (just as we did for the
de-centralized market economy).
Accordingly, let

u(c) = log c

and
Yt = F (Kt ,Nt ) = (Kt )α(Nt )1−α; 0 < α < 1.

It is easy to show that then the above 2× 2 system of difference
equations reduces to:

ct+1 = β
[
1+ α (kt+1)

α−1 − δ
]
ct ; (I′)

kt+1 = (kt )
α + (1− δ) kt − ct . (II′)

These two equations along with the two boundary conditions (initial
k0 and the TVC) will completely characterize the evolution of per
capita consumption and per capita capital stock for this centralized
economy.

Das (Lecture Notes, DSE) DGE Approach Jan 29-Feb 22, 2019 95 / 104



General Equilibrium: Centralized Version (Contd.)

Comparing the dynamic equations charcaterizing the optimal paths of
ct and kt for the decetralized market economy (equations (I) and (II))
with that of the central planner (equations (I′) and (II′)), we find that
they are exactly identical.
Thus the market economy’s equilibrium path would be idential
to that attained by the social planner.
This is a very strong result: it says that the market economy and the
centrally planned economy are equivalent in terms of outcomes!
But this strong result is based on a number of assumptions (each of
which is questionable in the context of the real world):

That there is perfect competition in the market economy and no
externalities;
That households are endowed with perfect foresight in the market
economy;
That the social planner is benevolent in the planned economy;
That the social planner is omnipotent in the planned economy.
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General Equilibrium (Centralized Version): Optimal Paths

Let us now solve these difference equations to characterise the optimal
paths of average/per capita consumption (ct) and average/per capital
capital holding (kt) for this centralized economy economy.

For analytical convenience, we shall assume that rate of depreciation
be 100%, i.e., δ = 1.

Our dynamic system is then represented by the following two
equations:

ct+1
ct

= β
[
α(kt+1)α−1] ; (I ′)

kt+1 = (kt )α − ct . (II ′)

The associated boundary conditions are:

k0 given; lim
t→∞

βtα(kt )α−1.
kt
ct
= 0
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Characterization of the Optimal Paths:

We are now all set to characterise the dynamic paths of ct and kt as
charted out by the above simplified system.

We could use the standard methods of solving difference equations
(note however that these are non-linear difference equations) to
characterise the solution paths. But that requires more work and we
postpone that analysis for the time being. (We shall come back to it
later in the module).

Instead, we use here the direct method of ‘guess and verify’(also
known as the method of undetermined coeffi cients).

Under the guess and verify method, we begin with a conjecture about
a trial solution path.

If the conjectured solution is indeed a solution, then it has to obey
the dynamic equations for all t.

We then verify under what conditon (if at all) our conjectured
solution can indeed be a solution to the dynamic system.
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Characterization of the Optimal Paths (Contd.):

Now let us make a conjecture that the optimal path of per capita
stock looks as follows:

kt+1 = M (kt )
α for all t, (C)

where M is a yet unknown constant.
If (C) is indeed the solution path for kt+1 for all t, then (from (II ′))
the corresponding solution path for ct would be given by:

ct = (kt )α − kt+1 = [1−M ] (kt )α.

Likewise,
ct+1 = [1−M ] (kt+1)α.
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Characterization of the Optimal Paths (Contd.):

Now from equation (I ′) :

ct+1
ct

= β
[
α(kt+1)α−1]

i.e.,
(kt+1)α

(kt )α
= αβ(kt+1)α−1

i.e., kt+1 = αβ(kt )α

⇒ M(kt )α = αβ(kt )α (given our conjecture).

Thus our conjecture would indeed be true (and satisfy all the relevant
equations) iff

M ≡ αβ.

Hence by the guess and verify method we have indeed identifed the
optimal solution paths of ct and kt for this simplified problem.
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Characterization of the Optimal Paths (Contd.):

These optimal paths are:

ct = (1− αβ) (kt )α for all t = 0;
kt+1 = αβ(kt )α for all t = 0.

It is easy to see that the the steady state value of kt is given by
k∗ = (αβ)

1
1−α .

The corresponding steady state value of ct is given by
c∗ = (1− αβ) (k∗)α.
Notice that above equation also charts out a growth path for per

capita capital stock kt :
kt+1 − kt

kt
= αβ(kt )α−1 − kt .

Hence there will be a concomitant growth path for the per capita
consumption ct .
How do these growth paths look?
Starting from any given k0, and choosing the corresponding optimal
c0 = (1− αβ) (k0)α - does the economy approches its steady state
(k∗, c∗)?
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General Equilibrium with Perfect Markets: What have we
learnt so far?

Moreover note that given that total population/labour force is
constant at H, this equations will also govern the evolution of the per
capita output (yt) as well as aggregate output (Yt) in this economy.

In other words, through this dynamic general equilibrium (DGE)
analysis, we have actually characterized the growth path for the
economy, which brings us directly to the realm of economic growth.

Notice however that such growth path would be relevant only for a
perfectly competetive market economy populated by rational agents
with complete information and neo-classical technology.
Hence the growth model associated with the DGE framework also
falls within the ambit of neo-classical growth models.
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General Equilibrium: What have we learnt so far? (Contd.)

How does this growth path of output for the economy evolve over
time in the neoclassical growth model?

Does aggregate output increase perpetually along such a growth path,
or does it go to a steady state in the long run?

Could there be alternative growth paths associated with alternative
specification of the macroeconomy (say, with non-neoclassical
technology or imperfect markets)?

To answer these questions, we shall have to get into a detailed
discussion of various theories of economic growth, which we take up
as our the next topic.
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DGE Approach: Reference

Reference for Dynamic Programming Technique:

Daron Acemoglu (2009): Introduction to Modern Economic
Growth; Princeton University Press, chapter 6.

Reference for DGE approach to Macroeconomics (Perfect Market
Version):

Michael Wickens (2008): Macroeconomic Theory: A Dynamic
General Equilibrium Approach, Princeton University Press, chapters
1& 2.

Reference for Methods of Solving Difference Equations:

Oded Galor (2007): Discrete Dynamical Systems, Springer.

Statutory Warning: I do not follow any particular textbook word by
word. The references are to be treated only as broad guidebooks,
complementary to the lecture notes.

Das (Lecture Notes, DSE) DGE Approach Jan 29-Feb 22, 2019 104 / 104


	Modern Macroeconomics: the Dynamic General Equilibrium Approach

