Takings of Land by Self-interested Governments Economic Analysis of Eminent Domain Law

Ram Singh

Part 2

Part 2 1 / 25

Benevolent Governments I

Proposition

When government is benevolent, generally a fixed compensation scheme, including zero-compensation, cannot guarantee the first best outcome

A benevolent government

- will go for takings iff the state of nature θ is such that the net social benefit from the best possible project is positive
- Therefore owner, given x_{-i}^* , owner *i*'s problem is

$$\max_{x_i} \{ F(\hat{\theta}(x_i, x_{-i}^*)) v(x_i) + [1 - F(\hat{\theta}(x_i, x_{-i}^*))] \bar{c}_i - x_i \}$$

Part 2 2 / 25

Benevolent Governments II

The corresponding FOC is given by

$$\mathcal{F}(\hat{ heta}(x,\mathbf{x}_{-i}^*))\mathbf{v}'(x_i) - 1 = -\mathcal{F}'(\hat{ heta}(\cdot))[\mathbf{v}(x_i) - \bar{\mathbf{c}}_i]$$

(??) implies that x^* is a unique solution to the following

$$F(\hat{\theta}(x, \mathbf{x}_{-i}^*))v'(x) - 1 = 0$$
(2.1)

< ロ > < 同 > < 回 > < 回 >

Thus:

- Privately optimum investments can be greater or less than x*, depending on the quantum of the fixed-compensation.
- The only exception is the case when \bar{c}_i is fixed exactly at $v(x^*)$.

Part 2 3 / 25

Benevolent Governments III

Proposition

When the government is benevolent, the social welfare (common good) under restitution with under-compensation is higher than the outcome under full compensation (with or without the availability of restitution).

- Now the takings decision is as the first best
- Investment is less than full compensation levels but greater than the first best level
- Therefore first best cannot be achieved.
- As before, for appropriate values of γ , $x^* < x'(\gamma) < x^{FC}$
- The concavity of the SWF, in 4.1, ensures that social benefit is higher than under full compensation.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Social Vs Political Rankings I

Consider three public-goods: Public-park, Slip-road, Golf-course.

Government's Metric I

Let, β_p^G be the benefit to the government from project $p = 1, \dots, P$.

$$\beta_{\rho}^{G}(\theta) = \alpha \beta_{\rho}^{S}(\theta) + \epsilon_{\rho}, \qquad (2.2)$$

where

- α denotes the weight assigned by the government to the social interests,
- *ϵ_ρ* denotes the 'extraneous' considerations the government assigns to the project.

In general, $\alpha \neq 1$ and/or $\epsilon_p \neq 0$. Let,

$$\pi_{\rho}^{G}(\theta, \mathbf{x}) = \beta_{\rho}^{G}(\theta) - \delta \sum_{i}^{l} c_{i}(x_{i}), \qquad (2.3)$$

where

Part 2 6 / 25

Government's Metric II

- $c_i(\cdot)$ is the compensation paid to the *i*th owner, and
- δ the discount rate for the Govt.

 π_p^G denotes the net gains to the government from project $p = 1, 2, \dots, P$. Let,

$$\pi^{G*}(heta, \mathbf{x}) = \max\{\pi^G_{
ho'}(heta) | oldsymbol{p}' \in \mathbb{P}^{G+}\}$$

In general, for any given θ and **x**, we will have

$$\mathbb{P}^{G+}(heta, \mathbf{X})
eq \mathbb{P}^{S+}(heta, \mathbf{X}),$$

For instance,

Sinah

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Social Vs Political Rankings

Social Vs Political Rankings

Full Compensation: Cash-in the illegality

An owner *i* will choose *x_i* to maximize:

$$\max_{x_i} \left\{ v(x_i) - x_i \right\}$$

The first order condition:

$$v'(x_i) - 1 = 0.$$
 (3.1)

That is, will choose x^{FC} , where $x^{FC} > x^*$.

Proposition

Under 'full compensation'

- there will be excessive investment by the owners
- the government realizes a project whenever it interests it.
- Provision of judicial review does not change the outcome

The owners

• $x^{FC} > x^*$. and will not challenge the takings decisions.

Singh

Takings of Land

Part 2 10 / 25

Budget Constraints and Takings I

Proposition

Under 'full compensation', the proportion of inefficient takings can increase with Budget Constraints.

- Suppose there are *N* ≥ 3 neighborhoods
- At each Nbd any ONE of the projects can be taken up $\mathbb{P}^{G+} = \{ \text{ Golf-course, slip-road and public-park} \}$
- Under full compensation, the owners will not litigate.
- Suppose ℙ^{G+} = { Golf-course, slip-road and public-park}
- But recall $\mathbb{P}^{S+} = \{ \text{public-park, slip-road} \}.$
- Without budget constraints, the proportion of inefficient takings is 1/3
- With budget constraints, the proportion of inefficient takings can be 1/2 or even 1

Singh

Restitution/Injunction I

We assume that

- courts can issue injunction or restitute the condemned land, if the taking is not in public interest.
- the assumption is somewhat optimistic.

However, we consider it a reasonable assumption on the following grounds:

In several countries,

- Eminent Domain law requires (including Germany and India)
 - clear definition of public purpose
 - Cost and benefit analysis by the authorities
- courts check whether infringement of a right is 'proportional'
 - Germany, Poland, Portugal, Spain, Israel and the European Court of Justice, the New eminent domain law in India

Restitution/Injunction II

- Proportionality requires that the condemned land is the mildest infringement of property for realization of the project.
- That is, it rules out condemnation of parcels which are not necessary for realizing the project.
- If the taking passes these two tests, courts still check whether the project is 'necessary' in view of the totality of social benefits as well as the costs

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Restitution with Less-than-full Compensation I

With less than full compensation,

- Owners lose out if takings happen
- owners will seek injunction against inefficient/illegal takings
- Taking happens iff there common ground between Political and Social preferences

Scenario 1:

 Whenever socially preferred projects exist, at least one of them is of interest to the government. Formally,

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Restitution with Less-than-full Compensation II

Scenario 1:

$$\mathbb{P}^{G_+}(\theta, \mathbf{X}) \cap \mathbb{P}^{S_+}(\theta, \mathbf{X}) \neq \emptyset$$
, whenever $\mathbb{P}^{S_+}(\theta, \mathbf{X}) \neq \emptyset$

Proposition

Suppose, Scenario 1 holds. Under restitution and 'less-than-full compensation', the following outcome is achieved:

- taking happen iff it enhances the social welfare
- investment levels of the owners are less than under full compensation, but still greater than the first best
- First best is not achieved

Suppose compensation is $\gamma v(x_i)$, $\gamma < 1$. The optimisation problem of the *i*th owner is

$$\max_{x_i} \{ \pi^i \equiv F(\hat{\theta}(x_i, x_{-i})) \nu(x_i) + [1 - F(\hat{\theta}(x_i, x_{-i}))] \gamma \nu(\cdot) - x_i \}$$

Restitution with Less-than-full Compensation III

When
$$\frac{\partial^2 F(\hat{\theta}(x_i, x_{-i}))}{\partial x_i \partial x_j} \ge 0$$
, we have $\frac{\partial^2 \pi^i}{\partial x_i \partial x_j} \ge 0$ for all $i, j = 1, \dots, I$. So

- The game is thus *super-modular*
- It also satisfies the single-crossing property over [0, x^{FC}]
- an interior equilibrium exists and is identified by the FOC's,

$$V'(x_i) - 1 = (1 - \gamma)[(1 - F(\hat{\theta}(x_i, x_{-i})))V'(x_i) - F'(\hat{\theta}(x_i, x_{-i}))V(x_i)]$$

Moreover, Single Crossing Condition holds, i.e.,

$$\frac{\partial^2 \pi^i}{\partial \gamma \partial x_i} = (1 - F(\hat{\theta}(x_i, x_{-i})))v'(x_i) - F'(\hat{\theta}(x_i, x_{-i}))v(x_i) > 0$$

when

•
$$F'(\hat{\theta}(x_i, x_{-i}))$$
 is small or
• $(1 - F(\hat{\theta}(x_i^{FC}, x_{-i}^{FC})))v'(x_i^{FC}) - F'(\hat{\theta}(x_i^{FC}, x_{-i}^{FC}))v(x_i^{FC}) \ge 0$

Restitution with Less-than-full Compensation IV

The assumptions are especially plausible when

- Iand is agricultural or
- project is large many properties are taken

From the above,

- The unique equilibrium investment levels are an increasing and continuous function of γ
- At $\gamma = 1$, \mathbf{x}^{FC} is an equilibrium.
- So at a suitable range of $\gamma < 1$, we have an equilibrium $\in [x^*, x^{FC}]$.

Restitution with Less-than-full Compensation V

Scenario 2:

- There are states of nature such that while there are socailly desirable projects, none of them are politically desirable.
- However, in other states of nature, the two coexist.

Restitution with Less-than-full Compensation VI

Formally: For any given x,

 $\exists \ \theta' \in \Theta \text{ such that } \mathbb{P}^{S+}(\theta', \mathbf{X}) \neq \emptyset \text{ but } \mathbb{P}^{G+}(\theta', \mathbf{X}) \cap \mathbb{P}^{S+}(\theta', \mathbf{X}) = \emptyset, \text{ and } \\ \exists \ \theta'' \in \Theta \text{ such that } \mathbb{P}^{G+}(\theta'', \mathbf{X}) \cap \mathbb{P}^{S+}(\theta'', \mathbf{X}) \neq \emptyset$

Proposition

Suppose, Scenario 2 holds. Under restitution and 'less-than-full compensation', the following outcome is achieved:

- taking happen only it enhances the social welfare
- investment levels of the owners are less than under full compensation, but still greater than the first best
- First best is not achieved

A B F A B F

A D b 4 A b

Restitution with Less-than-full Compensation VII

Scenario 3: Regardless of the state of nature, no politically interesting project is socially desirable. Formally,

$$\mathbb{P}^{G+}(heta, \mathbf{X}) \cap \mathbb{P}^{\mathcal{S}+}(heta, \mathbf{X}) = \emptyset$$
, for all \mathbf{X} and all $heta \in \Theta$

Restitution with Less-than-full Compensation VIII

Under such unusual conditions,

- No project will be realized
- The uniquely best investment choice for each owner will be to choose x to maximize {v(x) − x}, i.e., to choose x^{FC}, as defined above.

Restitution with Less-than-full Compensation IX

Scenario 4: There exists a certain profile of investments that regardless of the state of nature, politically and socially desirable projects cannot coexist. Formally,

$$\exists \mathbf{x}$$
, such that: $\mathbb{P}^{G_+}(\theta, \mathbf{x}) \cap \mathbb{P}^{S_+}(\theta, \mathbf{x}) = \emptyset$, for all $\theta \in \Theta$

In principle, such a situation might arise if due to (excessively) high investments the opportunity cost of a taking is always greater than the social benefit, since

•
$$\boldsymbol{\rho} \in \mathbb{P}^{S+}(\theta, \mathbf{X}) \Leftrightarrow \beta_{\boldsymbol{\rho}}^{S}(\theta) - \sum_{i=1}^{I} v_{i}(x_{i}) \geq 0$$

• So increasing **x** high enough would ensure that for all $p \in \mathbb{P}$ and for all $\theta \in \Theta$, $\mathbb{P}^{S+}(\theta, \mathbf{x}) = \emptyset$

Restitution with Less-than-full Compensation X

If this occurs at the full compensation levels of investment, \mathbf{x}^{FC} , we have the following result:

Proposition

Suppose $\mathbb{P}^{G+}(\theta, \mathbf{x}^{FC}) \cap \mathbb{P}^{S+}(\theta, \mathbf{x}^{FC}) = \emptyset$ for all $\theta \in \Theta$ holds. Under restitution with full compensation, each owner will invest x^{FC} and there will be no takings.

- Owners, being under-compensated, want to reduce the probability of takings
- x^{FC} reduces the probability to zero while also being privately optimal

< ロ > < 同 > < 回 > < 回 >

Social Welfare I

Proposition

Under Scenarios 1 and 2, the social welfare (common good) under restitution with under-compensation is higher than the outcome under full compensation (with and without the availability of restitution).

For any given profile of investments **x**, the expected social benefit is given by:

$$\int_{\tilde{\Theta}^{*}(\mathbf{x})} \sum_{i=1}^{l} v(x_{i}) f(\theta) d\theta + \int_{\Theta^{*}(\mathbf{x})} \beta_{S \cap G}^{S}(\theta) f(\theta) d\theta - \sum_{i=1}^{l} x_{i}$$
(4.1)

- The result hold if we assume this is concave
- Since equilibrium we have $x^{**} < x'(\gamma) < x^{FC}$.

Social Welfare II

Proposition

Suppose Scenario 1 holds and the judiciary allows takings iff $\beta_p^S(\theta) \ge \sum_{i=1}^{l} v_i(x_i^*).$

- There is an equilibrium such that the investments are first best efficient,
- and the takings happens only if it improves the social welfare.
- There is no litigation.

Let compensation be fixed at $c^{**} < v(x^*)$. First, look at the Government's decision.

- Assume each owner opts x^* . Then $\mathbb{P}^{S+}(\cdot) \neq \emptyset \Leftrightarrow \beta_p^S(\theta) > Iv_i(x^*)$
- The owner's problem is then

$$\max_{x} \left\{ F(\hat{\theta}(x^{*}))v(x) + (1 - F(\hat{\theta}(x^{*})))c^{**} - x \right\}$$

 x^* is a Nash Equilibrium by all the players.