Public Goods as Drivers of Private Investment

Ram Singh

February 2nd, 2018

RAM SINGH (DSE)

Public Goods and Investment

・ロト ・回ト ・ヨト ・ヨト

э

February 2ND, 2018

The Model

We begin with a comparison of two localities (I, h) over an infinite time horizon.

- \bullet Each locality is owned by a representative individual owning fixed amount of land L
- Welfare of locality i at time t is $a_t^i \in [0,\overline{a}] \subset \mathbb{R}_+$, where $t \in \mathbb{Z}_+$
- a captures the various amenities provided by the locality to it's residents, with a_0 representing the initial amenities of *both* localities at time 0

Land can only be used to provide housing facilities and housing of locality *i* at time *t*, given by $H_t^i(L^i, K_t^i)$ is

$$H^i_t(L^i, K^i_t) = (L^i)^{lpha}(K^i_t)^{1-lpha}$$
 where $lpha \in (0, 1)$ and $i \in \{I, h\}$ (0.1)

Note that land has no time subscript—it is fixed on a per-locality basis.

・ロト ・日ト ・ヨト ・ヨト

Per period profit from housing in each locality is

$$\pi_t^i(a_{t-1}^i) = p_t^i(a_{t-1}^i)H_t^i - rK_t^i \text{ with } a_0^i \text{ given for } i \in \{I, h\}$$
(0.2)

Here,

- r is the rental rate of capital
- pⁱ_t(aⁱ_{t-1}) is the per unit price of housing services. It is dependant on the amenities in the locality *in the previous period*.
- Agents look back at the state of the locality yesterday in determining their willingness to pay for housing today.
- Specifically, we consider

$$p_t^i(a_{t-1}^i) = \frac{r}{1-\alpha} \left(a_{t-1}^i\right)^{\alpha}$$
 (0.3)

Given our assumptions, this is both increasing and concave in a_{t-1}^i

Optimal Capital Investment

Substituting the value of H_t^i from (0.1) in (0.2), the FOC wrt to K_t^i is

$$(1-\alpha)p_t^i(a_{t-1}^i)\left(\frac{L^i}{K_t^i}\right)^{\alpha} - r = 0$$

$$\Rightarrow K_t^i = \left(\frac{(1-\alpha)p_t^i(a_{t-1}^i)}{r}\right)^{\frac{1}{\alpha}}L^i$$

$$\Rightarrow \frac{K_t^i}{L^i} \equiv k_t^i(a_{t-1}^i) = \left(\frac{(1-\alpha)p_t^i(a_{t-1}^i)}{r}\right)^{\frac{1}{\alpha}}$$

Here, k_t^i is the optimal capital-land ratio in locality *i* at time *t*. From (0.3), we can see that

$$k_t^i(a_{t-1}^i) = a_{t-1}^i \tag{0.4}$$

ヘロン 人間 とくほど くほど

Investment in land today is simply the level of amenities yesterday. Clearly, investment is increasing in amenities.

Amenities and Investment

We now model amenities and investment. We have the following *locality-specific* amenity function which depends on the current level of investment per unit of land.

$$a_t^i(k_t^i) = \begin{cases} \log(1 + ck_t^i), & i = l \\ B\frac{(1 + k_t^i)^{1-m} - 1}{1-m}, & i = h \end{cases}$$
(0.5)

Here, c, m and B are positive constants with B, c, m > 1 and $B/c > 1 + \overline{a}$.

- The richer locality has a natural advantage due to higher pre-existing public investment (infrastructure, health, education)
- Because of this, amenities are more responsive to private investment (K_t^i)
- Operation of this mechanism is depicted by the use of log for locality *I* and iso-elastic (CRRA) for locality *h*.

・ロト ・日ト ・ヨト ・ヨト

Amenities and Investment

Both amenity functions are *increasing* and *concave*, but the log function dampens much quicker and is thus flatter than the iso-elastic functions.

イロト イヨト イヨト イヨト

A STEADY STATE

Define \bar{k} as $k : a^h(k) = \bar{a}$, i.e. the level of investment per unit land that results in maximum amenities for the high locality. Assume that capital employed beyond \bar{k} doesn't translate into higher amenities

(as amenities are bounded above by \bar{a}), thus capital will be bounded above by \bar{k} .

Therefore we have

$$a'_t : [0, \overline{k}] \to [0, \overline{k}]$$
 defined by
 $a'_t = \log(1 + ck'_t)$ (0.6)

Since

• the domain is *compact* and *convex*

• and the amenity function is *continuous* over the domain We can use *Brouwer's fixed point theorem* to conclude that:

.

$$\exists \underline{k} \in [0, \overline{k}] : a'_t(\underline{k}) = \underline{k} \forall t$$
(0.7)

・ロト ・日ト ・ヨト ・ヨト

RAM SINGH (DSE)

A STEADY STATE (CONT)

Clearly 0 is one such trivial fixed point. But we are interested in another. Either

- Choose $c = \frac{e^k 1}{\underline{k}} > 1$ for some $\underline{k} \in (0, \overline{k})$, which guarantees the existence of such a fixed point
- Alternatively, we can find the steady state by equating $a_{t+1}^\prime = a_t^\prime$

$$k'_{t+1} = \log(1 + ck'_t)$$

At steady state, $k'_t = k'_{t+1} = k$
 $\Rightarrow k = \log(1 + ck)$
 $\Rightarrow e^k = 1 + ck$
 $\Rightarrow \frac{e^k - 1}{k} = c$

Given our assumption on *c*, this implies that $k = \underline{k}$

・ロト ・日ト ・ヨト ・ヨト

Proposition 1

Given (0.4), (0.6), (0.7), the sequence of amenities for locality I will converge to \underline{k} which is a stable level of capital

Proof.

Case 1 : $a_0' < \underline{k}$

- Define the mapping $A_t^l \equiv a_t^l \circ k_t^l \ \forall t$. Thus given previous period's amenity a_{t-1}^l , A_t^l gives the current period's amenity (a_t^l) .
- For the given (restricted) domain, A'_t has the following form:

$$A_t'(a_{t-1}') \equiv a_t' \circ k_t'(a_{t-1}') = \log(1 + ca_{t-1}') \ orall \ t$$

• Let $A'_t(a'_{t-1})$ be denoted simply as A'_t . We thus have a sequence $\{A'_t\}_{t=0}^{\infty}$ of amenities with $A'_0 = a'_0$ given.

Our task is to show that this sequence converges to \underline{k}

February 2ND, 2018 10 / 14

<ロ> (四) (四) (三) (三) (三) (三)

PROOFS

Proof. (Cont.)

• By construction, if $a'_t < \underline{k}$ then $\log(1 + ck'_t) > k'_t$.

We have thus shown that if the initial amenity level is below \underline{k} then the sequence of amenities is an increasing sequence as long as each member of the sequence is less than \underline{k}

Since \underline{k} is a fixed point of the amenity function and the amenity function is increasing and concave, we have that \underline{k} is the *Least Upper Bound* of the sequence $\{A_t^{\prime}\}_{t=0}^{\infty}$ i.e. $A_t^{\prime} \leq \underline{k} \quad \forall t$.

PROOF. (CONT.)

Since every increasing and bounded above sequence converges to it's supremum, thus $A_t^l \rightarrow \underline{k}$

Case 2 : $\underline{k} < a'_0$

- Now $\log(1 + ck_t') < k_t'$ i.e. $A_t' < A_{t-1}' \forall t$
- Since <u>k</u> is a stable steady state, the decreasing sequence {A_t^l}_{t=0}[∞] converges to it's greatest lower bound <u>k</u>

Now, let $\gamma(a'_t) \equiv \frac{a'_{t+1} - a'_t}{a'_t}$ be the rate of growth of amenities for locality *I*.

We have already shown that $a'_{t+1} \leqslant a'_t$ for $a'_t \gtrless \overline{a}'$ and therefore,

$$\gamma(a_t') = rac{a_{t+1}'}{a_t'} - 1 \lessgtr 0 \quad , a_t' \gtrless \overline{a}'$$

Therefore, \bar{a}_l is the steady state level of amenity for locality *l*.

・ロト ・回ト ・ヨト ・ヨト

Proofs

We now restrict attention to the other locality and look at amenity function in equation (0.5).

$$a_t^h : [0, \overline{k}] \to [0, \overline{k}] \text{ defined as} a_t^h(k_t^h) = B \frac{(1+k_t^h)^{1-m} - 1}{1-m}$$
(0.8)

Since it is *continuous* on a *compact* and *convex* domain, by *Brouwer's fixed point theorem* we have a fixed point.

 \overline{a} is the desirable level of amenity for *any locality* and locality *h* will achieve it in the long run. To ensure this, we fix *B* at

$$B = \frac{\bar{a}(1-m)}{(1+\bar{a})^{1-m}-1}$$
(0.9)

February 2ND, 2018

so that $a_t^h(\overline{a}) = \overline{a}$.

Since $a_t^h(.)$ is *increasing* and *concave*, there exists a unique, non-trivial fixed point at $\overline{k} = \overline{a}$.

Proposition 2

Given (0.4), (0.5), (0.8), (0.9) and that $a_0^h \in (0, \overline{a})$, locality h will achieve the best possible amenity in the long run and this steady state is stable.

Proof.

• Define $A_t^h \equiv a_t^h \circ k_t^h \ \forall t$.

$$A_t^h(a_{t-1}^h) = B \frac{(1+a_{t-1}^h)^{1-m}-1}{1-m}$$

- A_t^h is the amenity of the locality at time t and it is a function of the previous period's amenity of the locality.
- Assumption (0.9) and the fact that ā is the unique fixed point of an increasing, concave function guarantee that {A_t^h}_{t=0}[∞] is an increasing sequence which converges to it's supremum ā.

イロト イヨト イヨト イヨト