A meeting of teachers of this course was held with a view to achieve the following aims:

- To finalise the topic wise reading list according to the newly framed CBCS course structure

- To discuss the pattern of the semester end exam

- To figure out how changes could be brought about in the listed topics to complete the course in time as well as to give a good intuition of the concepts to the students.

It was decided in the meeting that the syllabus would remain same as per taught in 2019.

The issues that were further discussed are as follows:

1. Marks allocation in the final exam question paper would be as follows: Maximum Marks: 75

 It was decided that no specific section wise weightage should be given and it should be left open to the paper setter as a particular question may cut across two or more topics.
2. It was also decided that in the final exam 7 questions should be asked out of which, a student should be asked to attempt 5 questions of 15 marks each.

3. Since students have already been exposed to Jay L. Devore, “Probability and statistics for Engineers”, Cengage Learning, 2010 in the third semester, hence it was decided to continue the same text for the topics on “Statistical Inference”. All the sub-topics under this topic are equally important for understanding the concepts of econometrics as well as from an examination point of view. This should also be brought to the notice of the paper setter.

4. The internal assessment would be a total of 25 marks which would comprise of 10 marks Class test, 10 marks Class test/project and 05 marks attendance. The project work is kept optional and individual teachers can decide on undertaking it depending upon the computer facilities in the college, time, and interest of the students. However it was also emphasized that the decision to undertake project or class test must be applicable on all students in a particular college.

The details of the Syllabus, Topic-wise Reading list, recommended text books are given below:

SYLLABUS

I. Nature and scope of Econometrics

II. Statistical Inference
 i. Normal distribution; chi-sq, t- and F-distributions
 ii. Estimation of parameters
 iii. Testing of hypotheses
 iv. Defining statistical hypotheses
 v. Distributions of test statistics
 vi. Testing hypotheses related to population parameters
 vii. Type-I and Type-II errors; Power of a test
 viii. Tests for comparing parameters from two samples.

III. Simple Linear Regression Model: Two Variable Case
 i. Estimation of model by method of ordinary least squares
 ii. Properties of estimators
 iii. Goodness of fit
 iv. Testing of Hypotheses
 v. Scaling and units of measurement
 vi. Confidence intervals
 vii. Gauss Markov Theorem
 viii. Forecasting

IV. Multiple Linear Regression Model
 i. Estimation of parameters
 ii. Properties of OLS estimators
 iii. Goodness of fit- R^2 and Adjusted R^2
iv. Partial regression coefficients
v. Testing Hypotheses: Individual and Joint
vi. Functional Forms of Regression Models
vii. Qualitative (dummy) independent variables

V. Violations of Classical Assumptions: Consequences, Detection and Remedies
i. Multicollinearity
ii. Heteroscedasticity
iii. Serial Correlation

VI. Specification Analysis
i. Omission of a relevant variable
ii. Inclusion of irrelevant variable
iii. Tests of specification

<table>
<thead>
<tr>
<th>TOPIC NO.</th>
<th>TOPIC</th>
<th>READINGS FROM CORE TEXTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Nature and scope of Econometrics</td>
<td>Gujarati: Ch 1</td>
</tr>
<tr>
<td>2.</td>
<td>Statistical Inference</td>
<td>Devore: Ch 7: Sec 7.4</td>
</tr>
<tr>
<td></td>
<td>Normal distribution; chi-sq, t- and F-distributions; estimation of parameters; testing of hypotheses; defining statistical hypotheses; distributions of test statistics; testing hypotheses related to population parameters; Type-I and Type-II errors; power of a test; tests for comparing parameters from two samples.</td>
<td>Ch 8: Sec 8.1 (exposition to be developed only using normal and t-distribution. Questions on hypothesis testing for binomial distribution are excluded), Sec 8.2 (excluding “β and sample size determination”, that is pages 313-314 and 318-320), Sec 8.4 (excluding “More on interpreting p values”, that is pages 335-337), Ch 9: Sec 9.1 (excluding “β and the choice of sample size”, that is page 350) Sec 9.5: pages 382-384 excluding p-values of F test. Gujarati: Appendix D, pages 507-510</td>
</tr>
<tr>
<td></td>
<td>Simple Linear Regression Model: Two Variable Case</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Estimation of model by method of ordinary least squares; Properties of estimators; Goodness of fit; Testing of Hypotheses; Scaling and units of measurement; Confidence intervals; Gauss Markov Theorem; Forecasting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gujarati: Ch 2, Ch 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dougherty: Ch2 (excluding “A Monte Carlo Experiment”, that is Sec 2.4)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Multiple Linear Regression Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimation of parameters; Properties of OLS estimators; Goodness of fit- R2 and Adjusted R2; Partial regression coefficients; Testing Hypotheses: Individual and Joint; Functional Forms of Regression Models; Qualitative (dummy) independent variables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gujarati: Ch 4, Ch 5, Ch 6: Sec 6.1, 6.2 and 6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dougherty: Ch3 (excluding Sec 3.4), Ch5: 5.1 and 5.4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Violations of Classical Assumptions: Consequences, Detection and Remedies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multicollinearity; Heteroscedasticity; Auto-correlation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gujarati: Ch 8, Ch 9 (Excluding Sec 9.5), Ch 10 (Excluding Sec 10.6, Appendix 10A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dougherty: Ch 3 (only sec 3.4 is to done), Ch 7: Goldfeld-Quandt test (p. 285-286 are to be done), Ch12 (pp 434-440 are to be done).</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Specification Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Omission of a relevant variable; Inclusion of irrelevant variable; Tests of specification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gujarati: Ch 7: Sec 7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dougherty: Ch 6: Sec 6.1</td>
<td></td>
</tr>
</tbody>
</table>

Reading List

It was decided that in addition to the sections mentioned above, the teachers may also refer to the relevant sections from the following books:

1. Christopher Dougherty, *Introduction to Econometrics, 4th* edition, OUP, Indian edition. This book provides very good intuitive explanation for all the topics covered in the syllabus. The appendices R.9, R.10, R.13 provide a good explanation to the topics covered under statistical inference.

NOTE: Readings recommended for the teachers will help to understand the intuition of the concepts but no specific question should be asked based upon them. The intuition is also useful for students but it is optional for them to use the books.