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Abstract: We estimate Carbon Mitigation Cost (CMC), and the factors determining change 

in CMC using environmental production function. The CMC index is defined as the ratio of 

maximum production of electricity under unregulated and regulated production technology. 

Change in CMC index is decomposed into technical change, scale change and change in the 

level of CO2 emissions. The production function is estimated for 45 coal-fired thermal power 

plants over the period of 2008 – 2012 using Data Envelopment Analysis. Decomposition of 

CMC change reveals that impacts of changes in scale of operation and CO2 emissions were 

more than the reduced costs realized due to technical changes. We find that the sample plants 

in Indian coal-fired thermal power sector had to sacrifice about 3.5 percent of electricity 

production amounting to 2005US$ 1702 million of revenue loss over the 5 years due to 

regulation of CO2 emissions.  
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1. Introduction 
 

Formulation of a cost-effective environmental policy and taxing polluters for environmental 

damages requires estimates of environmental costs and benefits. Environmental benefits are 

measured in terms of the economic value of foregone damages accruing to the society when 

production of bad outputs is reduced. Environmental costs are measured by taking costs 

borne by the producers for abating or preventing emissions by improving their production 

practices. Measuring the benefits is difficult to implement as it involves complex ecological 

and economic consequences (Liu and Sumaila, 2010).  We estimate the environmental costs 

associated with the emissions from coal-fired electricity generation, a major producer of CO2 

emissions in India.  

 

Coal based electricity generation, with an installed capacity of 222 GW, accounts for about 

three-fourth of total electricity generation (CEA, 2018) and about 40 percent of total CO2 

emissions in India (MoEF, 2010). In India, approximately 20 percent households are still 

without access to electricity.
1
 With about 520 GW capacity of proposed coal-fired power 

plants, the emissions of carbon are going to increase substantially (WRI, 2012). We intend to 

provide estimates of the opportunity cost of regulating carbon emissions [also termed as 

carbon mitigation cost (CMC)] in the coal-fired thermal power sector in India, using an ex-

post analysis.
2
 

 

Estimates of CMC are obtained either through survey methods or modelling joint-production 

of good and bad outputs (Pasurka, 2001; Färe et al., 2016). Färe et al. (2003) have termed 

these approaches as stated and revealed methods of calculating pollution abatement costs 

(PAC), respectively.
3
 In survey methods, information regarding costs of inputs assigned to 

emission mitigation is sought from the producers. Survey methods could be useful in 

collecting the required information for end-of-pipe treatment methods. But, in cases of 

integrated processes, it is difficult for producers to provide the required information, since 

inputs are not specifically assigned to mitigation activities. Therefore, we follow a joint-

production function approach to estimate CMC of coal-fired thermal power plants in India. 

     

Joint-production models consider that pollution generation is a by-product in the production 

process. These models relax the assumption of separability of pollution abatement activities 

from the process of marketed output production.
4
 Joint-production models, by avoiding the 

difficulties associated with the survey methods, do not assign separate inputs for pollution 

abatement activities, and hence do not require information on abatement technology and 

costs. Moreover, these models capture synergy among the abatement processes of multiple 

pollutants (Färe et al., 2003). 

 

                                                           
1
 India is able to electrify all the villages in April 2018, yet about 20 percent household have no access to 

electricity (http://saubhagya.gov.in/ as accessed on May 15, 2018). A village is said to be electrified if electricity 

is provided to public places and at least 10% of the total number of households are electrified in the village 

(http://www.ddugjy.gov.in/portal/definition_electrified_village.jsp, accessed on 17.02.2019)  
2
 Under the Kyoto Protocol, India was not required to reduce carbon emissions, but at the Paris Agreement, 

India has pledged to reduce the CO2 intensity of GDP by about 30-35 percent by 2030 relative to 2005. 

Reduction in the desired level of the intensity requires India to take some regulatory measures.  
3
 Carbon or CO2 mitigation cost (CMC) and pollution abatement cost (PAC) words are used interchangeably 

throughout the paper.  
4
 Martin et al. (1990) and Bellas (1998) consider pollution abatement activities to be independent from marketed 

output production processes.  

http://saubhagya.gov.in/
http://www.ddugjy.gov.in/portal/definition_electrified_village.jsp
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Joint-production models distinguish between regulated and unregulated technologies. 

Unregulated technology (strong or free disposability of emissions) assumes that pollutants 

can be disposed of, at no cost to the producer, while the regulated technology (weak or costly 

disposability of emissions) considers that a producer has to incur costs for reducing pollution, 

either in terms of reduced marketed output or assigning more inputs to the joint-production 

process for a given level of good output with a fixed input vector or a combination of both. 

Reduction in the emissions could be either due to government mandated regulations or 

voluntarily by the thermal power plant.  

 

The CMC index is defined as the ratio of the maximum marketed outputs under unregulated 

and regulated technologies. If a thermal power plant is able to throw away the CO2 emissions 

without incurring any cost, then the maximum output of electricity under regulated and 

unregulated technologies is same and the value of CMC index is equal to one. The index 

value is greater than one, if under the regulated technology, the maximum output of 

electricity is less than the maximum output under the unregulated technology. The 

opportunity cost of emission reduction (CMC) is CMC index minus one, multiplied by the 

output of electricity.
5
 

 

There are about 309 billion tonnes of coal reserves (mostly sub-bituminous) in India
6
. Indian 

coal, although cheaper than imported coal and natural gas, has low fixed carbon and high ash 

content. Indian thermal power plants rely largely on domestic coal.  Table 1 records 

electricity generation from coal and CO2 emissions from power sector during the period of 

2005 to 2013 in India.
7
 The production of electricity and CO2 emissions increased by about 

71 and 55 percent respectively during this period, indicating a decline in CO2 intensity of 

electricity generation by about 10 percent. CO2 emissions are not formally regulated in India, 

but there are regulations on emissions of other local pollutants viz. suspended particulate 

matter (SPM), SO2 and NOx emissions. CO2 and these local pollutants may be related to each 

other (Kumar and Managi, 2011; Färe et.al. 2012)..  Further, Clean Energy Cess (a sort of 

carbon tax) of Indian Rupees (INR) 50 (about US$ 0.75) per ton of coal/lignite consumed 

was introduced in India in 2010-11.. This cess was increased to INR 400 (more than US$ 6) 

per ton of coal/lignite consumed in 2016-17.
8
 All coal-fired thermal power plants are making 

efforts to increase energy efficiency so as to reduce coal consumption, thereby resulting in a 

reduction in the emissions per unit of electricity. This has been achieved by the addition of 

units with higher capacity, which are lower in carbon intensity as compared to units of lower 

generation capacity (Jain and Kumar 2018). Since the CO2 emission intensity of coal-fired 

electricity generation has been declining in India, the prevailing technology is assumed to be 

regulated technology and is compared with a counterfactual unregulated scenario for the 

purpose of estimating the CMC.
9
 

 

India, after signing climate treaty in Paris in 2016, has pledged to reduce the carbon intensity 

of its GDP by 30 – 35 percent by 2030 relative to 2005. To achieve this target, the coal-fired 

                                                           
5
 CMC = (CMC index − 1) × Electricity Output 

6
 Statistical Yearbook 2018, Ministry of Statistics and Programme Implementation, accessed from mospi.gov.in 

7
 Information on thermal power plants is available on financial year basis in India, starting April of a year and 

closing in the March of following year. Therefore, 2005 refers to April 2005–March 2006 and 2013 refers to 

April 2013–March 2014. 
8
 The Clean Energy Cess has been replaced by a GST Compensation Cess at the rate of INR 400 per metric ton 

of coal and lignite with effect from July 01, 2017. 

 (http://www.cercind.gov.in/2018/orders/13SM.pdf as accessed on July 22, 2019) 
9
 Considering the prevailing technology as unregulated technology makes the estimates of CMC upward biased 

(Färe et al., 2003) 

http://www.cercind.gov.in/2018/orders/13SM.pdf
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electricity sector has to reduce carbon intensity of electricity generation, i.e., emissions per 

unit of electricity, substantially, which in turn results in changes in CMC index. Therefore, it 

would be interesting to analyse the factors that contribute to changes in CMC index. One 

important way to understand the reasons is to decompose change in CMC index into a 

technical change (TC) index, an input change (IC) index and an undesirable output 

production change (UPC) index. To decompose CMC index into TC, IC and UPC, we follow 

Färe et al. (2016). TC and IC measure the changes in CMC index over time due to due to lack 

of free disposability of CO2 emissions, while the UPC reflects the change in CMC index due 

to a change in the levels of CO2 emissions generated by a thermal power plant over time. 

 

To generate estimates of the CMC index and the components of its change, we employ a 

joint-production approach, which produces electricity and CO2 emissions simultaneously. In 

the regulated technology scenario, we assume that the good and bad outputs are null-joint and 

jointly weakly disposable, i.e., to reduce CO2 emissions, the electricity generating plants have 

to forego the output of electricity, however they can reduce the output of electricity freely. 

We compute the indices of CMC and the components of its change using a non-parametric 

linear programming approach, known as data envelopment analysis (DEA). 

 

We find that Indian coal fired thermal power sector sacrificed about 3.5 percent of electricity 

production for reducing CO2 emissions during the period 2008 to 2012.
10

 There is an 

increasing trend in the average CMC. CMC is higher for the central government owned 

thermal power plants relative to the state governments owned plants. On average, thirteen out 

of 45 plants are reducing their emissions without incurring any cost. The changes in CMC are 

governed by the changes in IC and UPC, i.e., the changes in IC and UPC offset the changes 

in TC. Technical change in the Indian thermal power sector helps in reducing the CMC, i.e., 

the upward shift in the desired output frontier due to technical change is more under the 

regulated technology compared to the unregulated technology. This finding supports the 

Porter hypothesis.  

 

The remaining paper is organized as follows: Section 2 reviews the related literature in the 

areas of interest. The methodology followed in the paper is discussed in Section 3. Section 4 

describes the data used in the study, and the results are discussed in Section 5. Section 6 

concludes the paper. 

 

  

2. Related Literature 
 

A number of studies have applied the production theory to measure environmental costs of 

pollution prevention/abatement during the last four decades.  Lowe (1979) is perhaps the 

earliest attempt in measuring cost of abatement or shadow prices of pollutants using linear 

programming approach. Pittman (1981) estimates the marginal abatement costs of water 

pollutants in a joint-production framework, considering the pollutants as inputs. Pittman 

(1983) calculated adjusted measures of productivity using engineering estimates of shadow 

prices of bad outputs. Other attempts, using econometric joint-cost function, include Gollop 

and Roberts (1985), Kolstad and Turnovsky (1998) and Carlson et al. (2000). All these 

                                                           
10

 Descriptive statistics in Table 2, reveals that electricity production and CO2 emissions were about 12.14 and 

9.03 percent respectively, higher in 2012 compared to 2008, implying declining carbon intensity of electricity 

generation. If the intensity was constant over the period then an average plant had produced 216 thousand tons 

more of CO2 than actually produced i.e. 9726 thousand tons of CO2 emissions were mitigated by sacrificing 3.5 

percent of electricity production by the sample 45 plants. 
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studies use data of the US coal-fired power plants. 

 

Rolf Färe and his co-authors initiated the application of weak disposability of bad outputs in a 

joint-production framework for estimating shadow prices of pollutants in the early 1980s. 

There is another strand of literature that applies joint-production approach for measuring 

efficiency and productivity in the presence of bad outputs. The objective of the second strand 

of literature is to give credit to the producers for the reduction in environmental externalities 

and to estimate the opportunity cost of pollution regulation or the impact of regulation on 

firm’s performance. 

 

A number of studies have used a joint-production framework for estimating the shadow 

prices of pollutants, starting with the pioneering work of Färe et al. (1993). Zhou et al. (2014) 

provide a comprehensive survey of the studies estimating shadow prices of pollutants in the 

energy sector. Earlier studies used an output distance function to model joint-production of 

good and bad outputs (e.g., Färe et al., 1993; Coggins and Swinton, 1996, Swinton, 2002). 

Recent studies, following Färe et al. (2005) employ a directional output distance function for 

measuring shadow prices of pollutants (e.g., Murty et al., 2007; Marklund and Samakovlis, 

2007; Park and Lim, 2009; Matsushita and Asano, 2014; Fujii and Managi, 2015; Yagi et al; 

2015; Halkos and Managi, 2017; Johnstone et al., 2017; Jain and Kumar, 2018).  

 

Färe and Grosskopf (1983) and Färe et al. (1986) estimate the opportunity cost of pollution 

abatement, when the polluters are restricted to maintain an observed mix of good and bad 

outputs. Färe et al. (1989) specify hyperbolic measures of performance requiring proportional 

increases in good outputs and decreases in bad outputs to measure the opportunity cost of 

pollution abatement. Picazo-Tadeo et al. (2005) and Du et al. (2016) employ a directional 

output distance function that allows for expansion of marketed outputs and contraction of bad 

outputs for estimating firm performance and opportunity cost of emission reduction. Du et al. 

use a meta-frontier parametric programming approach for estimating the opportunity cost. 

Liu and Sumaila (2010) estimate pollution abatement costs of Norwegian salmon aquaculture 

industry using a joint-production approach. Note that all these studies provide specific 

estimates of pollution abatement costs or shadow price of a pollutant, but fail to shed light on 

the reasons for changes in abatement costs. 

 

Yet another strand of literature, measuring performance in a dynamic setting, includes studies 

assessing environmentally-sensitive efficiency and productivity change of production entities. 

These studies include Chung et al. (1997), Ball et al. (2005), Kumar (2006), Kumar and 

Khanna (2009), Kumar et al. (2015), among others. Most of the studies use data envelopment 

analysis (DEA), a nonparametric approach, for measuring the performance of the production 

units.
11

 The studies decompose environmentally-sensitive dynamic performance into 

efficiency change and technical change. 

 

Following the literature on the decomposition of environmentally-sensitive performance, 

some recent studies decompose pollution abatement cost (PAC) index into a technical change 

(TC) index, an input change (IC) index and an undesirable production change (UPC) index 

(Färe et al., 2016, Cui et al., 2018). The decomposition reveals the sources of change in the 

PAC. It helps in understanding the effects of change in scale of production, change in 

pollution intensity and change in the production technology on changes in PAC. 

 

                                                           
11

 Zhou et al. (2008) review the literature on the use of DEA to model environmental performance 
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In another study, CMC is estimated using a nonparametric DEA technique, wherein change 

in desired output due to change in the CO2 emissions is decomposed into carbon productivity 

(CP) and output elasticity of substitution (Wang et al., 2018). The carbon abatement cost 

(CAC) in Wang et al. is similar to the UPC component of change in CMC in Färe et al. 

(2016). These decompositions of CMC and change in CMC are essential inputs for 

improving the applicability and effective implementation of environmental policy. 

 

Studies estimating carbon mitigation costs are limited in India, though India is supposed to 

provide a leading role in the global climate policy. To our knowledge, there are only two 

studies (Gupta, 2006; Jain and Kumar, 2018) that have estimated the shadow prices of CO2 

emissions. Gupta (2006) estimates the shadow price of CO2 emissions using an output 

distance function, a radial measure of efficiency. Jain and Kumar (2018) estimate shadow 

prices of 56 coal-fired thermal power plants for the period of 2000 – 2013, using a directional 

output distance function. Both the studies use parametric linear programming approach for 

estimating output distance function and directional output distance function, respectively.  

 

Färe et al. (2016) define PAC as the ratio of maximum output under unregulated to regulated 

scenarios of emissions. Emissions are considered as outputs and are assumed to be freely 

disposable under unregulated disposal technology, by treating them equivalent to good 

output,
12

 but their disposability is costly when the technology is assumed to be regulated.  

 

In the present study, we estimate CMC and its decomposition using information of 45 Indian 

coal-fired thermal power stations for the period 2008 - 2012. This study gathers the required 

information for these plants, soliciting the Right to Information (RTI) Act 2005
13

 and the 

publications of Central Electricity Authority (CEA) and Central Electricity Regulatory 

Commission (CERC). 

   

 

3. Methodology 

 

3.1 Environmental Production Technology and Production Function 

 

As the objective is to find estimates of carbon mitigation costs (CMC), it will be interesting 

to understand the relationship between mitigation activities and associated changes in 

production of marketed output (Pasurka, 2008). In this section we discuss the conditions that 

an environmental production function should satisfy in order to be a conventional production 

function. An environmental production function (technology) considers null-jointness in the 

                                                           
12

 A given technology captures the basic relations between inputs and outputs, based on physical and natural 

laws. From the technology point of view, emission is not a freely disposable output. It is costly in terms of the 

good output foregone or in terms of more inputs required to produce same level of good output, i.e., there is a 

positive trade-off between good output production and emission generation. The prevailing technology is of 

weak disposability. Strong disposability is a counterfactual case, considered to compute the cost of emission 

reduction. There are two approaches for modelling free disposability of bad outputs. We follow Färe and 

Grosskopf (1983) and other subsequent studies in modelling the free disposability of bad outputs, by treating 

bad outputs equivalent to good outputs. The second approach drops the constraint related to the bad outputs in 

the maximization of good output or measure of technical efficiency (Färe et. al., 2016).. The difference between 

these two approaches of modelling free disposability of bad outputs is inclusion of downward sloping frontier of 

bad output Färe et. al. (2016) follow the later approach, which does not involve bad outputs under free 

disposability of bad outputs formulation.  
13

 Right to Information (RTI) Act 2005 mandates time bound reply to citizen appeals for government 

information. (http://righttoinformation.gov.in/). 

http://righttoinformation.gov.in/
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production of electricity and emissions and assumes that electricity and emissions are jointly 

weakly disposable. 

 

Consider that a coal-fired electricity generating plant produces a vector of good outputs 

𝑦 = (𝑦1, … … , 𝑦𝑀) ∈ ℜ+
𝑀 and bad outputs 𝑏 = (𝑏1, … … , 𝑏𝐽) ∈ ℜ+

𝐽
 using a vector of inputs 

𝑥 = (𝑥1, … … , 𝑥𝑁) ∈ ℜ+
𝑁. The emissions produced by a thermal power plant are considered as 

bad outputs. The environmental production technology is represented by an output set which 

is defined as: 

 

𝑃(𝑥) = {(𝑦, 𝑏): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)}, 𝑥 ∈ ℜ+
𝑁     (1) 

 

The output set consists of the combinations of good and bad outputs that can be produced by 

a given input vector. It satisfies the standard axioms of compactness and free disposability of 

inputs (Färe et al., 2005). Since the output combination consists of both good and bad 

outputs, the output set should satisfy the axioms of null-jointness in good and bad outputs and 

weak disposability of bad outputs. 

 

The axiom of null-jointness implies that a coal fired thermal power plant inevitably generates 

CO2 emissions, when it generates electricity, i.e., 𝑖𝑓 (𝑦, 𝑏) ∈ 𝑃(𝑥) 𝑎𝑛𝑑 𝑏 = 0, 𝑡ℎ𝑒𝑛 𝑦 = 0. 
Similarly, the axiom of weak-disposability of bad outputs implies the reduction in CO2 

emissions requires simultaneous proportional reduction in generation of electricity, i.e., 

electricity generation and CO2 emissions are jointly weakly disposable: 𝑖𝑓 (𝑦, 𝑏) ∈
𝑃(𝑥) 𝑎𝑛𝑑 0 ≤ 𝛼 ≤ 1, 𝑡ℎ𝑒𝑛 (𝛼𝑦, 𝛼𝑏) ∈ 𝑃(𝑥). However, the reduction in electricity generation 

without reducing CO2 emissions is attainable: 𝑖𝑓 (𝑦, 𝑏) ∈ 𝑃(𝑥), 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑦0 ≤ 𝑦, (𝑦0, 𝑏) ∈
𝑃(𝑥).  
 

To represent the environmental production technology using the conventional production 

function,
14

 we assume that a thermal power plant produces only one good output, electricity. 

Considering 𝑦 ∈ ℜ+
𝑀, an environmental production function is defined as: 

 

𝐹(𝑥; 𝑏) = max {𝑦: (𝑦, 𝑏) ∈ 𝑃(𝑥)}      (2) 

 

Since 𝑃(𝑥) is non-empty and compact, the function 𝐹(𝑥; 𝑏) exists. Moreover, 𝐹(𝑥; 𝑏) is non-

decreasing in inputs since inputs are freely disposable. The axioms of weak disposability of 

emissions and null-jointness imply that an environmental production function should satisfy 

the following conditions: 

 

𝑖𝑓 𝑦 ≤ 𝐹(𝑥; 𝑏) 𝑎𝑛𝑑 0 ≤ 𝛼 ≤ 1, 𝑡ℎ𝑒𝑛 𝛼𝑦 ≤ 𝐹(𝑥; 𝛼𝑏)   (3) 

  

and 

  

𝐹(𝑥; 0) = 0         (4) 

 

Equation (3) reflects that proportional reduction in good and bad outputs is attainable. 

Equation (4) depicts the essentiality of bad outputs in the production of good output, 

following the null-jointness axiom, 𝑖𝑓 𝑦 = 𝐹(𝑥; 𝑏) 𝑎𝑛𝑑 𝑏 = 0, 𝑡ℎ𝑒𝑛 𝑦 = 0.  

                                                           
14

 An environmental production function is a special case of an environmental directional distance function, 

which credits for the expansion of good output. This formulation has been chosen as it replicates Indian CO2 

mitigation policy in thermal power sector. 
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As the good output is freely disposable, 𝑦 ≤ 𝐹(𝑥; 𝑏);  𝑦 is feasible. Under this condition, the 

output set can be recovered by defining: 

  

𝑃(𝑥) = {(𝑦, 𝑏): 𝑦 ≤ 𝐹(𝑥; 𝑏)}       (5) 

 

Therefore, an environmental production function is a complete characterization of a single 

good output environmental production technology and is a special case of environmental 

directional distance function (Färe et al., 2007). However, contrary to environmental 

directional distance function, the environmental production function does not directly credit a 

producer for reduction in emissions. It seeks to maximize the production of good output for 

an observed level of inputs and bad outputs. 

 

The environmental production function can be estimated parametrically or non-

parametrically. Each approach has its own pros and cons. In this study, we use data 

envelopment analysis (DEA), a nonparametric approach, for the estimation of the production 

function. Assume there are 𝑘 = 1,2, … . . , 𝐾  observations of inputs, good output and bad 

outputs, i.e. (𝑦𝑘, 𝑏𝑘 , 𝑥𝑘), 𝑘 = 1, 2, … . . , 𝐾 , is a production vector. Assuming weak 

disposability of bad outputs, we consider a regulated production function for observation 𝑘′ 

as: 

 

𝐹(𝑥𝑘′
; 𝑏𝑘′

) = max ∑ 𝑧𝑘𝑦𝑘
𝐾
𝑘=1        (6) 

Subject to          ∑ 𝑧𝑘𝑏𝑘𝑗 = 𝑏𝑘′𝑗,     𝑗 = 1,2, … , 𝐽𝐾
𝑘=1  

          ∑ 𝑧𝑘𝑥𝑘𝑛 ≤ 𝑥𝑘′𝑛,   𝑛 = 1, 2, … , 𝑁𝐾
𝑘=1  

          𝑧𝑘 ≥ 0,                𝑘 = 1,2, … , 𝐾  

 

where 𝑧𝑘 (𝑘 = 1,2, … , 𝐾) are the intensity variables or the weights assigned to each 

observation in the construction of production possibility frontier. We assume constant returns 

to scale.
15

 

 

The objective function shows the maximum quantity of the good output, which can be 

produced from the production possibility frontier, constructed from the observations. The 

first constraint of equality imposes weak disposability of bad outputs. The second constraint 

in the linear program (LP) is with respect to the inputs employed in the production process; 

there is a separate constraint for each of the N inputs used by a thermal power plant. The right 

hand side of the constraint represents the observed amount of inputs used by a producer, 

while the left hand side of the constraint depicts the theoretical amount of inputs used by an 

efficient producer. The inequality sign shows that the inputs employed by a theoretical 

producer must be less than or equal to the inputs employed by a plant, i.e., the inputs are 

freely disposable. Moreover, to ensure null-jointness in good and bad outputs, the following 

conditions are imposed: 

 

                                                           
15

 In the measurement of technical efficiency of thermal power plants in India Singh (1991), Shanmugam and 

Kulshreshtha (2005), Shrivastava et al. (2012) Sahoo et al. (2017) also assume constant returns to scale (CRS). 

Some studies measure technical efficiency under variable returns to scale (VRS) by adding a convexity 

constraint to the CRS model. However, adding a convexity constraint to the CRS model under weak 

disposability is not equivalent to a VRS model under weak disposability (Färe and Grosskopf, 2003). Chen 

(2013) indicates that VRS model under weak disposability condition is highly non-linear and is difficult to 

solve, and the production set is non-convex and non-monotonic.  
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(a) ∑ 𝑏𝑘𝑗 > 0,    𝑘 = 1,2, … , 𝐾𝐽
𝑗=1  

(b) ∑ 𝑏𝑘𝑗 > 0,    𝑗 = 1,2, … , 𝐽𝐾
𝑘=1   

 

That is, each row and column has at least one positive element of bad output in plant-level 

pollutants matrix (i.e. each plant produces at least one bad output and each bad output is 

produced by at least one plant). Null-jointness can be reflected by making  𝑏𝑘′𝑗 = 0 in 

equation (6). In this case all the intensity variables will be equal to zero, implying that in the 

absence of bad outputs there is no good output. 

 

In an unregulated production function, the bad outputs are freely disposable. The LP problem 

for an unregulated production function is: 

 

𝐺(𝑥𝑘′
; 𝑏𝑘′

) = max ∑ 𝑧𝑘𝑦𝑘
𝐾
𝑘=1        (7) 

Subject to          ∑ 𝑧𝑘𝑏𝑘𝑗 ≥ 𝑏𝑘′𝑗 ,     𝑗 = 1,2, … , 𝐽𝐾
𝑘=1  

          ∑ 𝑧𝑘𝑥𝑘𝑛 ≤ 𝑥𝑘′𝑛,   𝑛 = 1, 2, … , 𝑁𝐾
𝑘=1  

         𝑧𝑘 ≥ 0,                𝑘 = 1,2, … , 𝐾 
 

The LP program in equation (7) is similar to equation (6), except for the equality condition 

with respect to bad outputs. In this case the equality constraint is replaced by an inequality 

constraint of greater than equal to (≥) sign. This inequality constraint ensures that the 

quantity of emissions produced by a theoretical producer should be greater than or equal to 

the amount of emissions produced by the observed producer, i.e., bad outputs are freely 

disposable.
16

 

    

  

3.2  CO2 Emission Mitigation Cost (CMC) and its Decomposition 
 

When CO2 emissions are not regulated, their disposal is free for polluters but not for the 

society. But the regulation of emissions makes their disposal costly and polluters have to 

divert resources from production of marketed output to reduce emissions. The reduction in 

emissions is achieved at the cost of reduced marketed output. Thus the CMC, an opportunity 

cost of reducing emissions, is defined as a loss of marketed output, associated with CO2 

emission mitigation activity (Färe et al., 2007; Färe et al., 2016).  

 

𝐶𝑀𝐶 = 𝐺(𝑥𝑘′
; 𝑏𝑘′

)/𝐹(𝑥𝑘′
; 𝑏𝑘′

)       (8) 

 

Thus, CMC is the ratio of maximum feasible production of marketed output under 

unregulated to regulated scenario, for a given level of mitigation activity. This ratio is equal 

to one, if the regulation of emissions is not affecting the production of marketed output, and it 

is greater than one, when the mitigation of emissions reduces the production of marketed 

output.  
 

Figure 1 provides the graphical presentation of unregulated and regulated technology 

frontiers as 0EBUC and 0ABUC respectively in period t. At the observed good and bad 

                                                           
16

 Technologically there is a positive relation between the production of good and bad outputs, irrespective of 

the state of regulation. Under regulation, to internalize the emissions effect, the good output is reduced for 

reducing emissions and in an unregulated situation more of good output is produced simultaneously producing 

more of bad outputs. However, we use free disposability condition as a counter-intuitive case (Färe et al., 2016). 
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output combination (y, b) corresponds to point ‘a’ in period t, the CMC is equal to rb′
rb⁄  and 

if the observed output combination of good and bad output (y, b) corresponds to point ‘f’, 

then CMC is equal to sf′
sf⁄ . 

 

The CMC reflects the cost of emission regulation in terms of marketed output foregone 

during the year. The change in CMC (∆𝐶𝑀𝐶𝑡
𝑡+1) index is defined as the ratio of foregone 

marketed output in year t+1 relative to foregone marketed output in year t, therefore, we 

define the ∆𝐶𝑀𝐶𝑡
𝑡+1 as: 

 

∆𝐶𝑀𝐶𝑡
𝑡+1 =

𝐺𝑡+1(𝑥𝑡+1;𝑏𝑡+1)/𝐹𝑡+1(𝑥𝑡+1;𝑏𝑡+1)

𝐺𝑡(𝑥𝑡;𝑏𝑡)/𝐹𝑡(𝑥𝑡;𝑏𝑡)
=

𝐺𝑡+1(𝑥𝑡+1;𝑏𝑡+1)/𝐺𝑡(𝑥𝑡;𝑏𝑡)

𝐹𝑡+1(𝑥𝑡+1;𝑏𝑡+1)/𝐹𝑡(𝑥𝑡;𝑏𝑡)
   (9) 

 

If the value of ∆𝐶𝑀𝐶𝑡
𝑡+1 is equal to one, it indicates that between period t and t+1 the cost of 

regulation is constant, and if it is greater than one, it shows that CMC increases over the 

period, and, if the value of the index is less than one, CMC decreases over the period. To 

show the changes in CMC from time t to t+1 graphically, we extend Figure 1; 0WTZV and 

0RSTZV represent the production technologies under unregulated and regulated scenarios in 

period t+1. Corresponding to output combinations of good and bad outputs in period t and 

t+1 at points ‘a’ and ‘i’, respectively, the change in CMC is:  

 
 

∆𝐶𝑀𝐶𝑡
𝑡+1 =

sj′/sj

rb′/rb
=

sj′/rb′

sj/rb
 

 

Färe et al. (2016) decompose the ∆𝐶𝑀𝐶𝑡
𝑡+1 index into TC index, IC index and UPC index as 

follows: 

 

∆𝐶𝑀𝐶𝑡
𝑡+1 =

[(
𝐺𝑡+1(𝑥𝑡+1;𝑏𝑡+1)/𝐺𝑡(𝑥𝑡+1;𝑏𝑡+1)

𝐹𝑡+1(𝑥𝑡+1;𝑏𝑡+1)/𝐹𝑡(𝑥𝑡+1;𝑏𝑡+1)
) (

𝐺𝑡+1(𝑥𝑡;𝑏𝑡)/𝐺𝑡(𝑥𝑡;𝑏𝑡)

𝐹𝑡+1(𝑥𝑡;𝑏𝑡)/𝐹𝑡(𝑥𝑡;𝑏𝑡)
)]

1

2
×

[(
𝐺𝑡(𝑥𝑡+1;𝑏𝑡+1)/𝐺𝑡(𝑥𝑡;𝑏𝑡+1)

𝐹𝑡(𝑥𝑡+1;𝑏𝑡+1)/𝐹𝑡(𝑥𝑡;𝑏𝑡+1)
) (

𝐺𝑡+1(𝑥𝑡+1;𝑏𝑡)/𝐺𝑡+1(𝑥𝑡;𝑏𝑡)

𝐹𝑡+1(𝑥𝑡+1;𝑏𝑡)/𝐹𝑡+1(𝑥𝑡;𝑏𝑡)
)]

1

2
×

[(
𝐺𝑡(𝑥𝑡;𝑏𝑡+1)/𝐺𝑡(𝑥𝑡;𝑏𝑡)

𝐹𝑡(𝑥𝑡;𝑏𝑡+1)/𝐹𝑡(𝑥𝑡;𝑏𝑡)
) (

𝐺𝑡+1(𝑥𝑡+1;𝑏𝑡+1)/𝐺𝑡+1(𝑥𝑡+1;𝑏𝑡)

𝐹𝑡+1(𝑥𝑡+1;𝑏𝑡+1)/𝐹𝑡+1(𝑥𝑡+1;𝑏𝑡)
)]

1

2
     

 

=(𝑇𝐶𝑢 𝑇𝐶𝑟⁄ ) × (𝐼𝐶𝑢 𝐼𝐶𝑟⁄ ) × (𝑈𝑃𝐶𝑢 𝑈𝑃𝐶𝑟⁄ ) = 𝑇𝐶 × 𝐼𝐶 × 𝑈𝑃𝐶   (10) 

 

where TC measures the change in CMC associated with technical change in the unregulated 

technology scenario relative to the regulated technology scenario over time. Similarly, IC 

measures the changes in CMC due to changes in the marketed output associated with the 

changes in input levels when the technology is unregulated relative to the regulated 

technology over time, whereas UPC (undesirable production change) denotes the change in 

CMC due to changes in good output over time associated with the changes in the emission 

levels under regulated technology. A value exceeding one for TC, IC or UPC indicates that 

the component is associated with increasing ∆𝐶𝑀𝐶 between the period t and t+1. 
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To show graphical the components of change in CMC, Figure 1 is extended to include the 

frontier for unregulated and regulated technologies involving technology of t period and input 

combination of t+1 period (0PMYN and 0LMYN) and technology of t+1 period and input 

combination of t period (0KGXH and 0FGXH). Graphical relationship between ∆𝐶𝑀𝐶𝑡
𝑡+1 

and its different components, viz, TC, IC and UPC is specified as follows: 

 

∆𝐶𝑀𝐶𝑡
𝑡+1 =

sj′/rb′

sj/rb
= [(

sj′/sh′

sj/sh
) (

rc′/rb′

rc/rb
)]

1

2
× [(

sh′/sf′

sh/sf
) (

rd′/rc′

rd/rc
)]

1

2
× [(

sf′/rb′

sf/rb
) (

sj′/rd′

sj/rd
)]

1

2
(11) 

 

Note that in Färe et al. (2016), change in good output due to change in the production of bad 

output under unregulated technology remains unaffected as they consider only the horizontal 

part of production frontier. But we take negatively sloping part also in defining strong 

disposability of bad outputs. Therefore, it is possible that, as a result of change in bad output, 

the production of good output is also affected. In the negatively sloping segment of the 

production frontier, reduction in CO2 emissions could be associated with a higher production 

of electricity.  

 

Changes in CMC between periods t and t+1 depend upon relative shifts in unregulated and 

regulated frontiers. If the maximum good output under unregulated technology increases at a 

faster rate than under the regulated technology, then ∆𝐶𝑀𝐶𝑡
𝑡+1 is greater than one, as CMC 

increases. The index value equal to one indicates that the rate of increase in maximum good 

output under the strong and weak disposability of bad outputs is the same and the CMC 

remains constant over time. On the other hand, if the maximum good output increases at 

faster rate under regulated technology relative to unregulated technology, then CMC 

decreases over time and the index value is less than one. This case supports the Porter 

hypothesis, i.e., properly designed environmental regulations, involving technological 

change, input mix change or good output change, can trigger innovations that may partially 

or fully offset the costs of environmental compliance (Porter and van der Linde, 1995). We 

apply the concept of CMC and its decomposition to measure opportunity cost of CO2 

emission reduction in the Indian coal-fired thermal power sector. 

  

 

4. Data 
 

We need plant level information for outputs and inputs to estimate the opportunity cost of CO2 

emission mitigation. A coal-fired thermal power station inevitably produces CO2 emissions 

and electricity, using various inputs such as coal, labour, capital etc. Survey methods require 

information on expenditure incurred on abatement activities, which is difficult to get for the 

carbon mitigation activities. Therefore, to get estimates of carbon mitigation costs (CMC), we 

resort to a joint-production function model. The information required for estimating the 

opportunity cost was obtained from the individual plants invoking the Right to Information 

(RTI) Act and various publications of CEA and CERC. 

 

Petitioning via the RTI Act enabled us to acquire the required information on an unbalanced 

panel of 56 coal-fired thermal power stations for the period of 1999 – 2013. But we could get 

complete data for a balanced panel of only 45 plants for the period of 2008 – 2012. Out of 

these 45 plants, 18 plants are owned and operated by the Central government [including 13 by 

one corporation i.e., National Thermal Power Corporation (NTPC)] and the remaining 27 

plants are run by the various state governments.    
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To estimate the opportunity cost of carbon emission mitigation, we employ plant level 

information on three inputs: capital, labour and coal, and two outputs: electricity and CO2 

emissions. Net electricity generation
17

 is measured in gigawatt hours (GWh). CO2 emissions, 

generated by a plant, are measured in tons. The CEA has been collecting the baseline data in 

order to facilitate the Clean Development Mechanism (CDM) projects since 2001. Details of 

CO2 emissions in the coal-fired thermal power sector are given in the User Guide of Baseline 

Data, published by CEA.
 18

 

 

In the sample plants, coal is the primary fuel in electricity generation process and its 

consumption is measured in tons
19

. We measure labour in terms of wage bill paid by a thermal 

power station during a year; wage bill information is available at current prices and is 

converted into constant prices using the labour wage index published by the Labour Bureau, 

Government of India. Capital input is computed following Dhrymes and Kurz (1964).
20

 

 

Table 2 provides the descriptive statistics of the variables for the years 2008 to 2012.  We 

observe that between 2008 and 2012, the average electricity production and CO2 emissions 

of sample plants have increased by about 12 and 9 percent respectively. 

  

 

5. Results and Discussion 
 

We solve linear programs under weak and strong disposability of CO2 emissions to estimate 

the opportunity cost of mitigating the emissions. For the computation of CMC and changes in 

it, we solve the linear programs for the contemporaneous frontiers, i.e., period t+1 technology 

consists of period t+1 observations and period t technology consists of period t observations. 

To measure the components of change in CMC we also have to solve the linear programs for 

t+1 technology consisting of t period observations and t period technology consisting of t+1 

period observations. 

 

Table 3 presents geometric means of CMC, ∆CMC and components of ∆CMC at the plant 

level. We observe significant variations in the opportunity costs among the power plants. We 

find that out of 45 plants, 13 plants show CMC index value equal to one and remaining 32 

plants show a value greater than one. This implies that these 13 plants are able to throw away 

the CO2 emissions without incurring any cost, but the remaining plants have to incur 

mitigation costs for reducing the emissions. On an average, plants run by the State 

government had to forego the electricity production by about 3 percent per annum whereas 

plants run by the Central government had to sacrifice the desired output by about 5 percent in 

a year. Bhusawal thermal power plant in the state sector and Farraka thermal power plant in 

the central sector have lower CO2 intensity of electricity generation and these plants have to 

forego more electricity for a unit of CO2 reduction; these plants had to lose about 15 percent 

of their electricity production per year for mitigating the CO2 emissions. Generally state-

                                                           
17

 Net electricity generation is defined as gross electricity generation minus auxiliary consumption of electricity 

which is used by the plant for generation of electricity.  
18

 CO2 Baseline Database for the Indian Power Sector, User Guide, Version 11.0, April 2016, CEA.  
19

 Domestic coal, used in thermal power plants in India, is assumed to be homogeneous, almost having same 

heat content. Since plant-wise data on coal quality and heat rate was not available for the study period, gross 

consumption of coal has been used. In Indian thermal power plants, use of non-coal fuel is minimal. The plants 

use oil, only as an ancillary fuel.  
20

 Dhrymes and Kurz (1964), compute capital input as a product of total capacity available during the year, its 

operational availability factor and number of hours of in a year, measured in Gigawatt hours.  For details on the 

data and variable measurement, please see Jain and Kumar (2018).  
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owned plants are smaller in size and less efficient (or have higher auxiliary consumption of 

electricity) as compared to centre-owned plants (Jain and Kumar 2018). 

 

We find a positive correlation between carbon productivity (Electricity produced/CO2 

emissions) and CMC.
21

 Higher carbon productivity implies lesser scope for emission 

mitigation per unit of desired output and this may be considered as a measure of regulatory 

stringency. This implies that as the regulatory stringency increases, the emission mitigation 

cost increases and it may be one of the reasons of the variations in CMC among the thermal 

power plants.  

 

The second reason may be related to scale of operation (plant size). We observe a positive 

correlation between carbon productivity and plant size or electricity produced by the plant; 

and a positive, but statistically insignificant, correlation between electricity produced and the 

mitigation cost. This reflects that larger plants use more carbon productive technology and it 

is costly for them to further reduce emissions. These findings corroborate with the findings of 

Färe et al (2003). They observe a similar behaviour of opportunity cost, estimated using the 

joint production framework for the US manufacturing firms.   

 

Table 4 presents the aggregate yearly loss in terms of good output and resultant revenue loss 

of the sample plants during the period of 2008 – 2012 due to regulations in disposal of CO2 

emissions. Over these five years, if the sample power plants were not involved in any carbon 

emission mitigation activity, they would have produced about 59152 GW more of electricity 

and earned an additional revenue of 2005US$ 1702 million.
22

 This comprises of 3.88 and 

4.35 percent of total electricity production and revenue respectively. Out of a total of 225 

observations over the five years, 60 percent observations do not incur emission mitigation 

costs. Though we could not find any trend in production or revenue loss, the loss has 

increased by 68 percent in terms of production and about 130 percent in terms of revenue in 

the terminal year in comparison to the initial years. This reflects that the opportunity cost of 

carbon emission mitigation is increasing.  

 

Figure 2 fails to discern any trend in CMC index. From the figure it is evident that the 

thermal power plants owned by the central government have to incur higher opportunity costs 

for emission reduction, relative to the plants owned by the various state governments. The 

carbon productivity of the central government owned plants is higher than the plants owned 

by the state governments and further increasing carbon productivity or reduction in carbon 

emissions is costly for these plants. Note that the plants owned by the state governments are 

of smaller size and higher vintages in comparison to the plants owned by the central 

government, resulting in  lower carbon productivity among these plants (Jain and Kumar, 

2018). 

 

To understand the reasons of increasing opportunity cost of CO2 emission mitigation in the 

                                                           
21

 Wang et al. (2018) find that CMC is the product of carbon productivity and output elasticity of substitution of 

CO2 emissions. Output elasticity of substitution (OES) is defined as a ratio of changing rate of the frontier’s 

desirable output level due to the changing rate of CO2 emissions, i.e., 𝑂𝐸𝑆 =
%∆𝑦

%∆𝑏
. OES indicates the 

substitution relationship between the desirable output and CO2 emissions. For a plant having higher carbon 

productivity, the CMC would be higher since the possibilities of substitution will be lower in comparison to a 

plant having lower carbon productivity. 
22

 Year-wise plant level sale price of electricity at current prices was taken from Central Electricity Authority 

(CEA) and was converted into 2004-05 level prices, using fuel price index of Reserve Bank of India. The losses 

are converted to $US, to make it understandable to readers globally. 
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Indian coal-fired thermal power plants, we decompose the changes in the carbon mitigation 

costs into TC, IC and UPC. ∆CMC measures the change in mitigation cost in year t+1 

relative to year t, the ∆CMC index is greater than one if the cost are increasing, it is less than 

one if the costs are decreasing and it is equal to one if the costs remain constant over time. 

 

Figures 3, 4 and 5 show the average annual trend in ∆CMC and its components for all the 

plants, for plants owned by the central government and for plants owned by the state 

governments respectively. For all the plants, we observe that during the period 2008 to 2009 

there is about one percent increase in the CMC, but it declines by about 3 percent during the 

period 2009 to 2010 and it increases again by about 2 percent during the period 2010 to 2011. 

It remains stagnant during the period 2011 to 2012. It should be noted that the overall 

changes in the CMC are governed by the technical changes in the production process. A 

similar kind of trend is visible for the plants owned by the central sector (Figure 4), but for 

the plants owned by the state governments, ∆CMC is governed by the input changes (Figure 

5) 

 

Figure 6 presents the distribution of the cumulative CMC change indices of the 45 thermal 

power plants during 2008-2012. It varies in a range of 0.7 to 1.64; we define 5 intervals: 

[0.69 - 0.9], [0.9 – 1.0], [1.0 -1.05], [1.05 – 1.10] and [1.10 – 1.70]. Sixty four percent of the 

plants fall in the interval of [1.0 - 1.05], revealing that the CMC for these plants increased by 

five percent. In about 27 percent cases, the CMC has declined and in five percent 

observations the CMC has increased by more than 10 percent. 

 

Table 3 presents the geometric means for ∆CMC and its components for the individual power 

plants over the study period. The mean values of ∆CMC vary from 0.9664 to 1.0828 with an 

overall mean of 1.0031. This shows that the CMC has increased at about 0.31 percent per 

year. There are large variations in the changes in CMC among the plants. In plants owned by 

state governments, the CMC increases at about 0.63 percent per annum, but it declines at an 

annual rate of 0.22 percent in central government owned plants. Of the 27 state governments 

owned plants, the CMC increases for 11 plants, it declines for 7 plants and the mitigation cost 

remains constant for 9 plants. But among the plants owned by central government, 4 plants 

observe no change in the CMC, 06 plants observe a decline in the mitigation cost and 

increase is observed in 8 plants. In the state governments owned plants, K-Gudem thermal 

power plant has the largest average decline of 3.36 percent per year in the mitigation costs, 

but Bhusawal thermal power plant has an average increase of 8.28 percent per year. 

Similarly, among the central government owned plants, Neyweli-ST2 and Vindhyachal have 

the largest decline and increase in the magnitude of mitigation cost of about 3 percent and 

1.15 percent per year respectively. Variations in the CMC and ∆CMC show that the Indian 

thermal power sector has potential to reduce the carbon emissions cost effectively provided 

the Indian environmental or climate policy uses market-based instruments. 

 

Greater than one value of any of the indices of TC, IC or UPC leads to a positive change in 

the CMC, a value less than one of the index leads to negative change in the CMC and a value 

equal to one reflects that it does not contribute in the change of CMC in the subsequent year. 

As stated above, the CMC is increasing for the thermal power plants owned by the state 

governments but it is declining for the plants owned by the central government. We find that 

about 71 percent of thermal power plants observe a technical change that leads to decline in 

the CMC, for both state and central governments owned plants. The overall average TC index 

of 0.995 indicates that the opportunity cost of reducing CO2 emissions has been declining due 

to technical change. The TC index measures the relative shifts of the unregulated and 
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regulated frontiers between periods t and t+1. If both frontiers are shifting outward, a value 

less than unity indicates that outward shifting of the regulated frontier is faster than that of 

the unregulated frontier.  This may be a reflection of activities undertaken by these plants to 

enhance carbon productivity. Weak disposability of CO2 emissions discourages carbon 

intensive generation of electricity and power plants adopt technology that simultaneously 

increases output of electricity and reduces CO2 emissions, and thus the regulated production 

frontier shifts towards the north-west. This finding supports the Porter hypothesis and 

concurs with Murty and Kumar (2003), i.e., higher environmental compliance enhances 

technical efficiency of Indian manufacturing firms. 

 

Note that IC and UPC offset the reduction in CMC due to TC for the thermal power plants 

owned by the state governments. We find that in the state plants, 16 out of 27 plants observe 

an IC index value greater than one. Similarly, 11 out of 18 plants owned by the central 

government experience increase in the CMC due to change in the scale of operation (IC index 

value is greater than one). That is, due to change in the scale of operation, the production of 

electricity increases at a higher rate under the unregulated technology relative to the regulated 

technology and as a result the mitigation costs increase. We find that IC index is higher for 

the central government owned plants relative to the state governments owned plants. In 

Bhusawal and Sipat plants, CMC increases by about 20 and 17 percent respectively due to 

changes in scale of operation. On the other side, change in the scale of operation helps in 

reducing the CMC by about 6 percent per year in Bhatinda thermal power plant.  

 

The UPC index is greater than one for about 50 percent of all the thermal plants and this ratio 

is about 67 and 22 percent for the plants owned by state and central governments 

respectively. Mandatory regulations of CO2 reduce the production of electricity, as the 

thermal power plants cannot throw away the emissions freely under weak disposability 

condition, as they are able to do under the unregulated technology. In the state government 

owned plants, the regulation of CO2 emissions increases CMC at the rate of about 0.5 percent 

per year, while in the central government owned plants the regulation fails to have any 

significant impact on the CMC. Thus the decomposition of CMC change shows that increase 

in the CMC due to weak disposability of the CO2 emissions is offset by the technical change 

in case of central government owned thermal power plants. These findings imply that 

effective technology can help in reducing the mitigation costs effectively. 

 

Since majority of the thermal power plants in India are having sub-critical generation 

technology during the study period, technical change (TC) is not able to offset the changes in 

CMC due to changes in scale (IC) and CO2 emissions (UPC). Thus mere 

addition/augmentation of capacity will not achieve the desired objective of reduction in CO2 

emissions. This calls for introduction of newer technologies viz. super-critical, ultra-super 

critical etc.
23

 

  

 

 

                                                           
23

 The terms sub-critical, super-critical and ultra-super-critical are related to steam operating conditions in the 

boiler of a plant defined in terms of pressure and temperature. The main steam pressure (MPa) is less than 22.1 

for the sub-critical plants, it lies between 22.1 to 25 for supercritical plants and for ultra-supercritical plants this 

value is higher than 25. Ultra-supercritical and supercritical technologies are more efficient, require less fuel per 

unit of electricity generated and produces less emissions relative to subcritical plants. In India, generally the 

power plants in the capacity of 100-600 MW capacity are sub-critical and of greater than 660 MW capacity are 

supercritical. 
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6. Conclusions 
 

Global warming is considered a major challenge to society. Though India’s per capita carbon 

emissions are low in comparison to global average and the emissions in the developed world, 

being fourth largest emitter of CO2 emissions, it has a major role to play in the mitigation of 

these emissions. Coal-fired electricity generation is a major source of carbon emissions in 

India. This study estimates the carbon emission mitigation costs (CMC) and its 

decomposition using joint production function framework. The estimates of CMC and the 

factors influencing it could be important inputs in an effective climate policy. 

 

We estimate CMC and the factors determining change in the CMC, using information of 45 

coal-fired thermal power stations over the period of 2008 – 2012. The required information is 

gathered petitioning the Right to Information (RTI) Act. We estimate an environmental 

production function using data envelopment analysis (DEA), a non-parametric approach 

under a regulated and unregulated technology. In the estimation of environmental production 

function, we invoke the axioms of null-jointness in the production of electricity and CO2 

emissions and weak disposability of the emissions. The CMC index is defined as a ratio of 

maximum desired output produced under unregulated and regulated technologies. The change 

in the CMC index is decomposed into TC, IC and UPC indices.    

 

We observe that, on an average, out of 45 plants, 32 plants produce more electricity under 

unregulated technology than regulated technology over the period of 2008 – 2012. Indian 

thermal power sector has to forego the electricity output by about 3 percent per year as the 

CMC and change in the CMC are higher for those plants which observe higher electricity 

output per unit of carbon emissions. This implies that regulatory stringency and scale of 

operation are the determinants of the CMC. Moreover, the decomposition of change in CMC 

reflects that in Indian thermal power plants, technical changes favour decline in the CMC, but 

the changes in the scale of operation and CO2 emissions result in offsetting the benefits of 

technical change.  

 

Huge variation in the CMC reveals that the Indian thermal power sector can reduce the 

emissions cost-effectively by providing economic incentives to the polluters. Similarly, 

existence of strong disposability in the disposal of bad outputs (due to presence of technical 

inefficiencies) in the sector presents a case of environmental and managerial improvement. 

Possibilities of faster shift in the regulated frontier relative to unregulated frontier shows that 

a properly designed climate policy may produce more of electricity with reduced CO2 

emissions, i.e., sustenance of Porter hypothesis. The results of this study may be essential 

input for a well-designed climate policy as they provide ex-ante estimates of environmental 

costs.  
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Table 1: Trend in electricity generation and CO2 Emissions from power sector in India 

 Year 

CO2 (million 

tons) 

Electricity 

(million Units) 

CO2 

intensity 

(Kg/KwH) 

CO2 intensity 

relative to 2005-06 

2005-06 469.7 435100 1.080 1 

2006-07 494.7 461340 1.072 0.993 

2007-08 520.5 486760 1.069 0.991 

2008-09 548.6 512530 1.070 0.992 

2009-10 580.1 539980 1.074 0.995 

2010-11 598.4 561760 1.065 0.987 

2011-12 637.8 612880 1.041 0.964 

2012-13 696.5 691560 1.007 0.933 

2013-14 727.4 746090 0.975 0.903 

Source: Compendium of Environment Statistics-2016 
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Table 2: Descriptive statistics 
Variable Unit Obs Mean Std. 

Dev. 

Min Max 

2008 

Electricity  GW  45 6456.72 5462.56 421.50 24964.11 

CO2 Thousand tons 45 6950.07 5151.37 469.76 23964.90 

Coal Thousand tons 45 5251.72 3974.07 333.50 18044.83 

Labour INR (millions) 45 5236.09 3462.19 76.00 13199.00 

Capital  GW 45 7003.34 5259.96 430.35 24040.54 

Carbon Productivity 

(Electricity/CO2) 

GW/1000 tons of 

CO2 

45 0.87 0.15 0.53 1.15 

2009 

Electricity (GW) GW 45 6605.15 5560.05 460.96 25903.78 

CO2 Thousand tons 45 7113.99 5262.00 499.14 24800.00 

Coal Thousand tons 45 5281.86 4048.25 350.90 18500.00 

Labour INR (millions) 45 53.20 31.31 1.66 152.28 

Capital (GW) GW 45 7233.44 5475.13 468.05 24507.38 

Carbon Productivity 

(Electricity/CO2) 

GW/1000 tons of 

CO2 

45 

0.86 0.15 0.53 1.06 

2010 

Electricity (GW) GW 45 6645.29 5544.13 423.53 25351.68 

CO2 Thousand tons 45 7033.95 5166.93 456.10 24300.00 

Coal Thousand tons 45 5326.27 4034.37 332.61 18300.00 

Labour INR (millions) 45 55.12 31.64 2.84 118.08 

Capital (GW) GW 45 7415.04 5441.53 448.60 24637.78 

Carbon Productivity 

(Electricity/CO2) 

GW/1000 tons of 

CO2 

45 

0.88 0.17 0.53 1.49 

2011 

Electricity (GW) GW 45 6952.52 5654.38 412.27 24282.50 

CO2 Thousand tons 45 7269.30 5255.05 448.60 23300.00 

Coal Thousand tons 45 5548.14 4199.74 325.99 17900.00 

Labour INR (millions) 45 53.93 30.27 2.84 115.42 

Capital (GW) GW 45 8003.47 5744.88 431.25 23985.78 

Carbon Productivity 

(Electricity/CO2) 

GW/1000 tons of 

CO2 

45 

0.89 0.18 0.51 1.48 

2012 

Electricity (GW) GW 45 7240.66 5982.52 397.04 24467.38 

CO2 Thousand tons 45 7577.77 5549.92 447.77 23467.37 

Coal Thousand tons 45 5909.96 4607.00 358.53 18919.76 

Labour INR (millions) 45 5521.53 3125.47 260.00 11329.00 

Capital (GW) GW 45 8399.90 6327.76 425.65 27360.70 

Carbon Productivity 

(Electricity/CO2) 

GW/1000 tons of 

CO2 

45 0.88 0.18 0.46 1.43 

Overall 

Electricity (GW) GW 225 6780.07 5600.12 397.04 25903.78 
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CO2 Thousand tons 225 7189.02 5236.35 447.77 24812.33 

Coal Thousand tons 225 5463.59 4148.86 325.99 18919.76 

Labour INR (millions) 225 5396.52 3158.67 76.00 15228.00 

Capital (GW) GW 225 7611.04 5635.05 425.65 27360.70 

Carbon Productivity 

(Electricity/CO2) 

GW/1000 tons of 

CO2 225 0.88 0.16 0.46 1.49 
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Table 3: Geometric Means of CO2 mitigation cost (CMC) index and decomposition of ΔCMC
 

Plant Name Ownership CMC ΔCMC TC IC UPC Carbon 

Productivity 

Akrimota Lignite State 1.014 1.0141 0.9851 1.0169 1.0123 0.719 

Amarkantak State 1 1 1.0197 1.0795 0.9084 0.711 

Bandel State 1 1 1 1.0236 0.977 0.657 

Bhatinda State 1 1.0057 0.9978 0.9438 1.0678 0.788 

Bhusawal State 1.145 1.0828 0.9514 1.1979 0.9501 0.780 

Chandarpur STPS State 1.078 0.9989 0.9864 0.9898 1.0231 0.887 

DPL State 1.021 1 1.0006 0.9443 1.0583 0.633 

Ennore State 1.074 0.9858 0.9769 0.9457 1.067 0.606 

Gandhinagar State 1.007 1.0608 0.9852 1.0228 1.0527 0.878 

K_gudem State 1.066 0.9664 0.9781 1.0127 0.9756 0.973 

K-Kheda II State 1.061 1.0119 0.9929 1.0366 0.9831 0.872 

Korba-East State 1.013 0.9872 0.9844 0.9991 1.0037 0.842 

Korba-west State 1 1 1 1 1 0.918 

Kota State 1.026 1 1.0086 0.9989 0.9926 0.946 

Kutch Lignite State 1.003 0.9964 0.9879 1.0032 1.0055 0.593 

Nasik State 1.015 1.0242 0.9916 1.0035 1.0294 0.810 

Panipat State 1 1 0.9991 1.0008 1.0001 0.859 

Paras State 1.036 1.0111 0.9941 1.0452 0.9731 0.841 

Parli State 1.012 1.0152 0.9887 1.0021 1.0247 0.787 

R_Gundem- B State 1 1 1 0.9967 1.0033 0.911 

Rajghat State 1 1 0.9906 0.9989 1.0106 0.696 

Rayalseema State 1.059 0.9921 0.9851 1.001 1.0062 1.049 

Sikka REPL State 1.001 1.0026 0.996 0.9763 1.031 0.759 

Suratgarh State 1 1 1.0548 0.9756 0.9718 0.957 

Ukai State 1 1.0031 1.0008 1.0032 0.9992 0.865 

Vijaywada/N Tata 

Rao 

State 1.137 1.027 0.9775 1.0373 1.0128 

1.292 

Wanakbori State 1.004 0.9956 0.9494 1.0284 1.0197 0.918 

Chandrapura 

(DVC) 

Centre 1.33 1.0106 1.1026 0.995 0.9212 

0.832 

Dadri (NCTPP) Centre 1.002 1.0054 0.9959 1.0354 0.975 1.023 

Durgapur Centre 1.018 1.0012 0.9981 0.9819 1.0216 0.801 

Farakka STPS Centre 1.148 0.9793 0.9702 1.0162 0.9933 1.034 

Kahalgaon STPS Centre 1.22 0.9823 1.0197 1.0604 0.9085 1.030 

Korba STPS Centre 1.009 0.9975 0.9871 1.0177 0.993 1.042 

Neyveli FST EXT Centre 1.004 0.9952 0.9862 1.0082 1.001 0.795 

Neyveli ST1 Centre 1 1 1.0004 0.9996 1 0.533 

Neyveli ST2 (M 

Cut) 

Centre 1.024 0.9706 0.9749 1.0105 0.9852 

0.741 

R-Gundem STPS Centre 1 1.0002 0.9973 0.9978 1.0051 1.047 

Rihand STPS Centre 1.0002 1 0.9988 0.9974 1.0039 1.049 

Simhadri Centre 1.038 1.0052 0.981 1.0761 0.9522 1.060 

Singrauli STPS Centre 1.011 0.9874 0.9899 1.0007 0.9969 1.023 

Sipat STPS Centre 1.049 1.0185 1.0069 1.172 0.8631 1.105 

Talcher Centre 1 1 0.9998 0.9985 1.0017 0.829 

Tanda Centre 1 1 1 1 1 0.849 
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Unchahar Centre 1.001 1.0005 0.9989 1.0028 0.9988 1.009 

Vindhyachal STPS Centre 1.004 1.0115 0.9946 1.0193 0.9978 1.043 

State (Geometric Mean) 1.0278 1.0065 0.9918 1.0095 1.0053 0.834 

Centre (Geometric Mean) 1.0443 0.9980 0.9998 1.0208 0.9779 0.944 

Overall (Geometric Mean) 1.0344 1.0031 0.9950 1.0140 0.9943 0.875 
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Table 4: Aggregate opportunity cost of CO2 emission mitigation (CMC) 

Year 

Electricity 

Loss (GW) % 

Resultant Revenue 

Loss (Million 

2005US$) % 

CMC=0 (% 

observations) 

2008 10894.00 3.75 238.36 3.56 56 

2009 13625.71 4.58 411.80 5.25 71 

2010 4877.78 1.63 154.42 1.96 53 

2011 11441.56 3.66 349.56 4.25 49 

2012 18312.84 5.62 547.44 6.46 71 

Total 59151.88 3.88 1701.58 4.35 60 

Note: Exchange rate: 1US$=INR65 

 

 

 

Figure 1: CO2 mitigation cost (CMC) and its decomposition 

 

Source: Adapted from Färe et al. (2016, Appendix A) 
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Figure 2: CMC index over the period of 2008 to 2012 

 
 

 

Figure 3: Change in CMC and its components (Overall) 
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Figure 4: Change in CMC and its components (Central Government owned Plants) 

 
 

 

Figure 5: Change in CMC and its components (States Government owned Plants) 
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Figure 6: Distribution of ΔCMC 
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