Economics with a Biological Foundation

Aldo Rustichini

Economics, Minnesota

Winter School 2022 at the Delhi School of Economics, Lecture 1

Aldo Rustichini (Economics, Minnesota)

Economics with a Biological Foundation

New Delhi, Lec 1

< □ > < □ > < □ > < □ > < □ >

- Economics as a science had some important developments in the last twenty years thanks to the introduction of new methods from biology
- Economics is now at a crossroads, and we need to evaluate how to proceed further
- This understanding is essential because choices which are fundamental for the future of societies depend on this vision

(日) (四) (日) (日) (日)

Three new Fundamental Directions

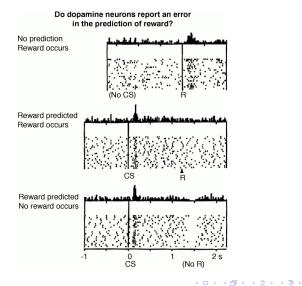
- Neuroeconomics
- **2** Genetics and economics
- Personality Theory

э

< □ > < □ > < □ > < □ > < □ >

- Neuroeconomics is the discipline that studies the neural basis of economic and strategic behaviour
- An important part of method used is the experimental study of human choices (or animal choices) pursued by combining the observation of behavior with that of associated neural processes (*fMRI*, recording from single neurons, *EEG*, *MEG*)
- Equally important is the study of other biological components underlying the behavior, for example the hormonal one.

(日) (四) (日) (日) (日)

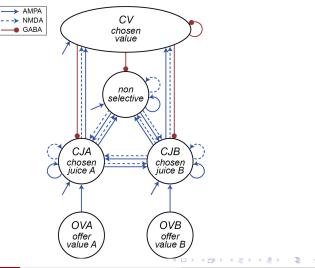

What we understood: some examples

Interview of the second sec

- Formal model: Q-Learning
- Neural correspondents of the components of the model
- e Neural basis of choice between options
 - comparison models based on diffusion processes (DDM)
 - richer models based on a network of groups of neurons that independently evaluate the various options
- Adaptation of the evaluation to the environment. (third lecture)
 - Accurate understanding of the quantitative impact and time duration of these effects.
 - Comparison with anomalies of visual perception
- Neural basis of important emotions
 - Regret, Envy
 - Empathy

(日) (四) (日) (日) (日)

What we understood: Value function learning Schultz, Dayan, Montague, 1997

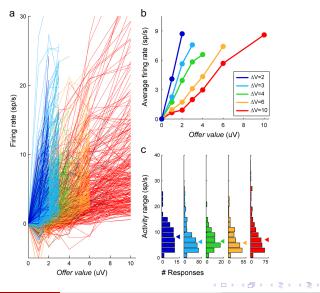


Aldo Rustichini (Economics, Minnesota)

Economics with a Biological Foundation

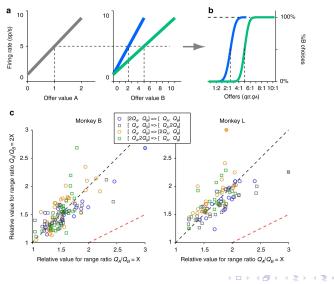
New Delhi, Lec 1

What we understood: Neural basis of choice between option Wong & Wang 2006, Rustichini & Padoa-Schioppa 2015, Rustichini et al., 2018



Economics with a Biological Foundation

New Delhi, Lec 1

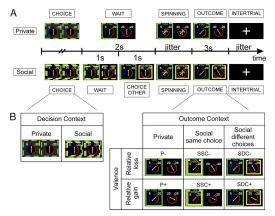

7/45

Adaptive Coding (Padoa-Schioppa, 2009)

Economics with a Biological Foundation

What we understood: Adaptation of value encoding Rustichini, Conen, Cai, Padoa-SCioppa, Nature Communications, 2017

Aldo Rustichini (Economics, Minnesota)

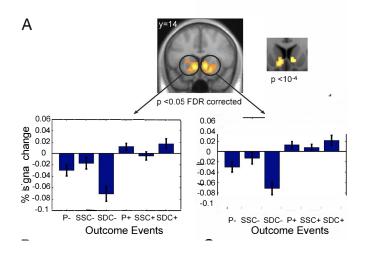

Economics with a Biological Foundation

New Delhi, Lec 1

What we understood: Regret and Envy

Bault, N., Joffily, M., Rustichini, A., Coricelli, G. (2011). Proceedings of the national Academy of sciences

Regret is counterfactual learning, envy is the social correspondent of regret.



H 5

• • • • • • • • • • • •

What we understood: Regret and Envy

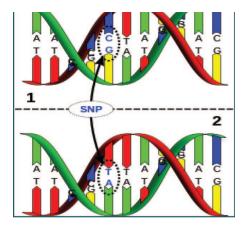
P: private, SSC: social same choice, SDC: social different choice,

.∃⇒ ⇒

• • • • • • • • • • •

What we understood: Summary

- Replacement of the as if models with mechanistic models of choice
- Peplacement of the optimality of choice with the optimality of the process producing choice


12/45

イロト イポト イヨト イヨト

Genoeconomics

- Genoeconomics is the discipline that studies the genetic basis of economic and strategic behavior
- The analysis was conducted until a few years ago (2000) with indirect methods (for example studies on identical and non-identical twins, adoption studies)
- The discipline changed radically after the completion of the Human Genome Project (HGP, 2000)

SNP's W. Sukhumsirichart, "Polymorphisms."

イロト イヨト イヨト イヨト

2

Genotype for each subject

subject_4	subject_3	subject_2	subject_1	gene	allele_2	allele_1	rs	chr	
C	0	0	0	GRIN2A	С	т	rs1868291	16	1
0.5	0	0	0.5	GRIN2A	Т	С	rs727605	16	2
0.5	0.5	0	0	GRIN2A	A	G	rs1014531	16	3
0.5	0	0	0	GRIN2B	т	G	rs1421109	12	4
c	0	0	0.5	GRIN2B	A	т	rs2192977	12	5
0.5	0.5	0	0	GRIN2B	A	G	rs220599	12	6
C	0	1	0	GRIN2C	A	G	rs690578	17	7
C	0	0.5	0	GRIN2D	т	с	rs892200	19	8
0.5	0	0	0	GRIN3A	с	т	rs1337682	9	9
0.5	0	0.5	0	GRIN3A	A	G	rs942139	9	10
C	0	0	0	GRIN3A	A	т	rs2485534	9	11
0.5	0	0.5	0	GRIN3B	с	G	rs2285907	19	12
0.5	0.5	0	0	GRINA	т	G	rs9100	8	13
1	1	0.5	1	GRM1	с	т	rs2073287	6	14
0.5	0	0	0	GRM1	G	т	rs2300620	6	15
C	0.5	1	0.5	GRM3	A	G	rs17126	7	16
0.5	0.5	0.5	0.5	GRM3	с	т	rs2189814	7	17
C	0.5	1	0.5	GRM4	A	с	rs2499724	6	18
0.5	0	0	1	GRM5	С	т	rs1499037	11	19
0.5	0	0	1	GRM5	A	G	rs160520	11	20
C	0	0	0	GRM5	G	с	rs566277	11	21
0.5	0.5	1	0	GRM5	A	G	rs524874	11	22

Aldo Rustichini (Economics, Minnesota)

Economics with a Biological Foundation

New Delhi, Lec 1

GWA Studies

- *HGP* allows the study of the individual variants of the nucleotide sequence of each individual, in particular of the most common variants
- Association of a phenotype (i.e. an individual characteristic of interest to economists, for example intelligence) with the profile of SNP's
- GWAS = Genome Wide Association Study, study of association on the entire genome
- On the whole genome rather than on special variants taken as candidates on the basis of some hypothesis (wide-ranging analysis)
- Based on the coefficients estimated on a large sample (up to 3 million) and on the individual genome, an individual index can be calculated for each individual a single numerical score of "propensity" for that phenotype (*polygenic index*).

イロト 不得 トイヨト イヨト

Single Nucleotide Polymorphisms (SNP's) A look at *dbSNP*

	✓ < < < >	Q	-) 🔍	ato 😝	*	
	10,175,320	10,175,330	rs.	18682	91 🔒	10,175,350	10,175,360
CCA	A C A G A T A G C G	GCTGAGATTT	ТС	TCCF	GAAT	TAAAGAAA	ATCTTGAATCCT
		CGACTCTAAA	AG	AGGT	CTTA	ATTTCTTT	TAGAACTTAGGA
e 109.	.20190607						
			(<	
AGAAA 76600	GAATGATGGA	rs1017336548 T	/A	rs37	7019033	T/A/C	rs1435780801 = T/A rs13
T 0000	rs545636909 = C	TGAT rs186829 /A/T rs5761878	342	T/C	1 51000	rs1292008907	A/C
🔳 C/T	rs1037958181 🚃	G/A rs	1219	466950	📕 G/A		
91 🔳 C, 271860							
1000	- N/ I						
				114.1			
с/т	rs545636909 🔳 C	/A/T rs186829	1				
-		rs5761878					
VP b15							
ipSNP	b152 v2			14			
2				14			
	10,175,320	10,175,330	10	175,340		10,175,350	10,175,360

< □ > < □ > < □ > < □ > < □ >

2

SNP and estimated coefficients for a phenotype

1 2 3 4 5 6 7	chr 1 1 1 1 1 1 1 1 1 1 1 1	snp rs3094315 rs12124819 rs28765502 rs7419119 rs950122 rs13302957 rs6696609	al_gwas G A C G G A	eaf .1514 .7534 .2721 .1956 .8265	beta 00034 .00224 .00062 00159 .00209	a2 A A T T	aa	whg_gwas .187841 .805265 .293799	ehg_gwas .067062 .708259 .180174	ys_gwas .275074 .855907 .336063	an_gwas .142544 .806391 .379175
2 3 4 5 6	1 1 1 1 1	rs12124819 rs28765502 rs7419119 rs950122 rs13302957 rs6696609	A C G G	.7534 .2721 .1956 .8265	.00224 .00062 00159	A T		.805265	.708259	.855907	.806391
3 4 5 6	1 1 1 1 1	rs28765502 rs7419119 rs950122 rs13302957 rs6696609	C G G A	.2721 .1956 .8265	.00062 00159	т					
4 5 6	1 1 1 1	rs7419119 rs950122 rs13302957 rs6696609	G G A	.1956	00159			.293799	.180174	.336063	.379175
5	1 1 1	rs950122 rs13302957 rs6696609	G	.8265		т					
6	1	rs13302957 rs6696609	A		00200		т	.187864	.1071	.301381	.223163
	1	rs6696609			.00209	G	G	.888598	.933675	.811673	.717794
7				.94558	.01256	Α	G	.895127	.971375	.89232	.926375
/	1		С	.7381	00465	С	c	.748911	.840348	.634459	.679222
8		rs13303368	С	.6259	.00155	С	C	.637048	.635491	.380561	.625773
9	1	rs8997	G	.95238	00413	G	A	.99999	.899998	.99999	.831192
10	1	rs4075116	т	.7517	.00466	Т	C	.716461	.711068	.633235	.874404
11	1	rs3934834	т	.1463	.00122	C	C	.223088	.179764	.17603	.318136
12	1	rs9442372	G	.5884	.00277	G	G	.493709	.520314	.46175	.520937
13	1	rs3737728	А	.2415	004	G	G	.31922	.383238	.333307	.215834
14	1	rs9442398	Α	.2432	00392	G	G	.302574	.430809	.256696	.19246
15	1	rs6687776	т	.1395	00499	C	C	.226012	.307714	.100211	.188605
16	1	rs9651273	G	.7415	00061	G	A	.631894	.903016	.674052	.675154
17	1	rs147606383	A	.03231	00012	G	G	1.000e-05	1.000e-05	.024756	.042848
18	1	rs4970405	G	.09694	00625	Α	A	.080652	.083992	.096237	.158729
19	1	rs12726255	G	.1224	00561	Α	G	.052937	.112964	.130353	.219438
20	1	rs7540009	G	.97619	.00409	G	G	.871357	.986093	.977251	.949558
21	1	rs11807848	т	.6395	.00307	т	C	.447148	.588475	.666348	.48269
22	1	rs9442373	Α	.6173	.00163	C	C	.332149	.659979	.515359	.481359
23	1	rs2298217	т	.119	00484	С	C	.12068	.182247	.155835	.172931
24	1	rs12145826	Α	.08844	.00464	G	G	.042145	.001726	.079172	.281438
25	1	rs4970357	С	.06973	.00276	Α	Α	.22221	.029936	.112252	.062593
26	1	rs11260603	С	.2279	00411	т	C	.246208	.414433	.270543	.056472
27	1	rs9442380	т	.05102	.00158	C	C	.147668	.010416	.100676	.106154
28	1	rs7553429	с	.02211	00066	Α	C	1.000e-05	.035401	.055514	.01107
29	1	rs4970362	G	.6718	.00106	G	A	.474806	.560819	.655434	.788869
30	1	rs9660710	С	.95918	00246	C	C	.79878	.967629	.922096	.965697
31	1	rs6670693	G	.005102	.00737	Α	A	1.000e-05	1.000e-05	1.000e-05	1.000e-05

Aldo Rustichini (Economics, Minnesota)

Economics with a Biological Foundation

New Delhi, Lec 1

< □ > < □ > < □ > < □ > < □ >

18/45

э

Polygenic Score (PGS)

- A Genome-wide association study (GWAS) produces estimated beta coefficients of the univariate regression of a phenotype on Single Nucleotide Polymorphisms (SNP's) values.
- Foe exampleç

phenotype = educational attainment (EA)

A Polygenic score (PGS) is a numerical value, computed for each individual, summarizing the probability ("risk") of a phenotype on the basis of the individual's genotype and the GWAS-estimated betas.

Genotype for each subject

	chr	rs	allele_1	allele_2	gene	subject_1	subject_2	subject_3	subject_4
1	16	rs1868291	т	С	GRIN2A	0	0	0	0
2	16	rs727605	С	т	GRIN2A	0.5	0	0	0.5
з	16	rs1014531	G	A	GRIN2A	0	0	0.5	0.5
4	12	rs1421109	G	Т	GRIN2B	0	0	0	0.5
5	12	rs2192977	Т	A	GRIN2B	0.5	0	0	0
6	12	rs220599	G	A	GRIN2B	0	0	0.5	0.5
7	17	rs690578	G	A	GRIN2C	0	1	0	0
8	19	rs892200	С	т	GRIN2D	0	0.5	0	0
9	9	rs1337682	Т	С	GRINSA	0	0	0	0.5
10	9	rs942139	G	A	GRINSA	0	0.5	0	0.5
11	9	rs2485534	т	A	GRINSA	0	0	0	0
12	19	rs2285907	G	с	GRIN3B	0	0.5	0	0.5
13	8	rs9100	G	Т	GRINA	0	0	0.5	0.5
14	6	rs2073287	Т	С	GRM1	1	0.5	1	1
15	6	rs2300620	Т	G	GRM1	0	0	0	0.5
16	7	rs17126	G	A	GRM3	0.5	1	0.5	0
17	7	rs2189814	т	С	GRM3	0.5	0.5	0.5	0.5
18	6	rs2499724	С	A	GRM4	0.5	1	0.5	0
19	11	rs1499037	т	с	GRM5	1	0	0	0.5
20	11	rs160520	G	A	GRM5	1	0	0	0.5
21	11	rs566277	С	G	GRM5	0	0	0	0
22	11	rs524874	G	A	GRM5	0	1	0.5	0.5

メロト メタト メヨト メヨト

2

GWAS-betas from the training sample

	rs	beta
1	rs1000000	.0037899
2	rs1000003	.0027337
3	rs10000005	0020734
4	rs10000010	001455
5	rs10000011	.013238
6	rs10000013	0035131
7	rs10000015	.0001121
8	rs10000017	.0006121
9	rs10000018	0016085
10	rs1000002	0004003
11	rs10000021	0027193
12	rs10000023	0008973
13	rs1000003	.002029
14	rs10000030	0033601
15	rs10000033	.0053658
16	rs10000036	0028181
17	rs10000037	0044699
18	rs10000038	0015369
19	rs10000039	0061476
20	rs10000041	0084939

< □ > < □ > < □ > < □ > < □ >

2

How a Polygenic Score (PGS) is computed

- The PGS is computed as a weighted sum of the values of the individual's variants, using as weights the GWAS-estimated coefficients from a training sample, including variants that do not achieve significance at conventional threshold, appropriately corrected for Linkage Disequilibrium (LDPred).
- **2** For a given genotype g, the PGS is:

$$PGS(g) = \sum_{k=1}^{K} \beta(k)g(k)$$

< ロ > < 同 > < 回 > < 回 >

PGS and Social Mobility Rustichini et al, Journal of Political Economy, 2023

Formulate predictions of a model integrating a genetic law of motion of skill

- in a unique set of data with complete genetic information on parents and children, in addition to information on education, personality traits, intelligence, family environment and income
- Estimate effect size for gene × environment correlation and of the degree of assortative matching.
- Explore pathways from genotypes to educational and economic success, and how they are mediated by Intelligence and non-cognitive skills.

Standard parental investment, with twins

The *i*th household solves:

$$\max_{(E^{i}, l_{1}^{i}, l_{2}^{i})} \mathbf{E}_{(\theta_{1}^{i}, \theta_{2}^{i})} \left((1 - \delta) \ln E^{i} + \delta \sum_{j=1,2} y_{j}^{i} \right),$$
(1)

subject to:

$$E^{i} + \sum_{j=1,2} I_{j}^{i} = Y^{i}$$
 (2)

$$h_j^i = \alpha_l \ln l_j^i + \alpha_\theta \theta_j^i + \epsilon_j^{h,i}, j = 1, 2$$
(3)

$$y_j^i = \alpha_h h_j^i + \epsilon_j^{y,i}, j = 1, 2$$
 (4)

Optimal Investment:

$$\hat{I}^{i} = rac{\delta lpha_{lh}}{1 - \delta + 2\delta lpha_{lh}} \exp(y^{i}) \equiv \psi \exp(y^{i}).$$

Aldo Rustichini (Economics, Minnesota)

Economics with a Biological Foundation

< □ > < ⊡ > < ⊡ > < ≡ >
 New Delhi, Lec 1

Skill Transmission

How does θ_{t+1} depend on θ_t ?

We replace the standard AR(1) Model

$$\theta_{t+1} = \eta \theta_t + \epsilon_{t+1}^{\theta}$$

with a genetic model.

25/45

< □ > < □ > < □ > < □ > < □ >

Skill Transmission

- Genotype: K bi-allelic loci, $\{A, a\}$ say;
- **2** We shorten aa = 1, aA = 0.5, AA = 0
- **③** Genotype set: $G^{\kappa} \equiv \{0, 0.5, 1\}^{\kappa}$; K is *large* (order: tens of thousand)
- The genetic component of skill transmission from parents to children follows:

$$H: (g_m, g_f) \mapsto H(g_m, g_f) \in \Delta(G^K).$$
(5)

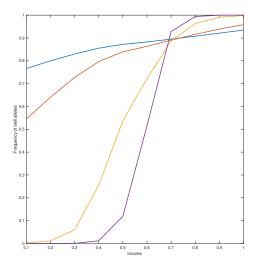
9 *H* follows well known rules of Mendelian inheritance; for instance if K = 1 so $G^{K} = \{0, 0.5, 1\}$, then H(0.5, 0.5) is (0.25, 0.5, 0.25), and H(0, 1) is (0, 1, 0).

26/45

< ロ > < 同 > < 回 > < 回 >

Matching Process

- Parents are matched on ordered characteristics (skill, income) and idiosyncratic characteristics (physical appearance)
- The utility from the matching with a partner of a skill and income type determines the value of the matching
- Stable matching as equilibrium concept


27 / 45

Stochastic Process on $\Delta(G \times Y)$

- The process of matching of parents, generation of children, parental investment and accumulation of human capital determines a stochastic process on the product of genotypes, income, characteristics;
- In the process is non-linear, so proving existence of the invariant measure is harder
- In the convergence to the invariant measure can be studied, and simulated;
- The convergence is fast.

28/45

Allele with strong affect on educational attainment has steeper frequency gradient with respect to income

Economics with a Biological Foundation

New Delhi, Lec 1 29 / 45

Genoeconomics

Income at the age 29, on family income, PGS, and Personality.

	(1)	(2)	(3)
	b/se	b/se	b/se
Family Income	0.134***	0.128***	0.078**
	(0.027)	(0.027)	(0.032)
Male	0.277***	0.276***	0.313***
	(0.025)	(0.025)	(0.029)
Male $ imes$ Family Income	-0.060**	-0.060**	-0.050*
2.00	(0.025)	(0.025)	(0.030)
PGS		0.078***	0.021
		(0.025)	(0.028)
Education Years			0.256***
10			(0.035)
IQ			800.0
			(0.029) 0.061**
MPQ PA			
			(0.026) -0.024
MPQ NA			(0.027)
MPQ CN			0.027)
			(0.032)
Externalizing			-0.072*
Externalizing			(0.037)
Academic effort			0.057
			(0.038)
Academic problems			-0.017
Academic problems			(0.034)
			(0.034)

イロト イヨト イヨト

э

SEM of Pathways from PGS to Education Years.

Equation	Variable	b	Ζ	p value	CI
Ed Yrs	C	0.285	4.87	< 0.001	[0.171, 0.401]
		(0.058)			
	NC	0.856	3.11	0.002	[0.315 , 1.4397]
		(0.276)			
	PGS	0.014	0.35	0.725	[-0.066 , 0.94]
		(0.041)			
	PGS mother	0.033	0.71	0.282	[-0.027 , 0.093]
		(0.030)			[
	PGS father	0.019	0.66	0.512	[-0.039 , 0.078]
		(0.030)			[
	Educ Parents	0.136	4.58	< 0.001	[0.078 , 0.194]
	Edde F drents	(0.29)		0.001	[0.010 , 0.15 .]
	Family Income	0.075	2.38	0.017	[0.013 , 0.137]
	r uning meonie	(0.031)	2.50	0.017	[0.010 , 0.101]
	Male	-0.151	-2.77	0.007	[-0.260 , -0.041]
	Walc	(0.055)	-2.11	0.007	[-0.200 , -0.041]
	Constant	0.376	9.85	< 0.001	[0.301,0.450]
	Constant	(0.027)	9.00	<0.001	[0.301 , 0.430]
c	PGS	0.287	9.21	< 0.001	[0 226 0 240]
L	PGS		9.21	<0.001	[0.226,0.349]
NC	DCC	(0.031)	1.05	0.051	
NC	PGS	0.040	1.95	0.051	[-0.0002, 0.081]
-		(0.025)			

2

Genoeconomics

SEM of Pathways from PGS to Education Years.

PGS of children and parents

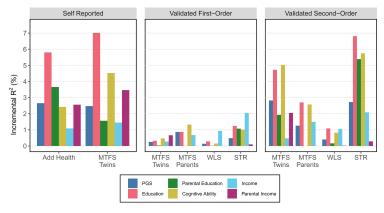
Equation	Variable	b/se	Ζ	p value	CI
Educ Parents	PGS mother	0.182	5.62	< 0.001	[0.118 0.245]
		(0.032)			
	PGS father	0.301	8.96	< 0.001	[0.235, 0.367]
		(0.033)			
	Constant	0.066	2.00	0.045	[0.001, 0.132]
		(0.033)			
Family Income	PGS mother	0.091	3.12	< 0.001	[0.034, 0.149]
		(0.029)			
	PGS father	0.154	5.05	< 0.001	[0.094, 0.213]
		(0.030)			
	Constant	0.131	4.28	< 0.001	[0.070, 0.198]
		(0.030)			
Ed Years	Educ Parents	0.183	8.76	< 0.001	[0.142, 0.224]
		(0.021)			
	Family Income	0.112	4.84	< 0.001	[0.066, 0.157]
		(0.023)			
	PGS	0.103	4.84	0.002	[0.038, 0.167]
		(0.032)			
	PGS mother	0.052	2.26	0.094	[-0.006, 0.084]
		(0.023)			
	PGS father	-0.003	-0.13	0.899	[-0.051, 0.044]
		(0.024)			
	Male	-0.139	-2.85	0.004	[-0.235, -0.043]
		(0.048)			
	Constant	0.345	13.43	< 0.001	[0.284, 0.395]
		(0.025)			
ini (Economics, Minnesota) Economics	s with a Biologi	cal Foundation		New Delhi, Lec 1

Aldo Rustichi

э

32/45

Personality Theory


- Individual economic and political behavior is dictated by broader characteristics than those traditionally examined by economics
 - Economics: attitude to risk, subjective discount factor
 - Intelligence
 - Conscientiousness
- Understanding of the hereditary and environmental components of these characteristics
 - Understanding of reasons for the existence of inequality and social mobility
 - Possible endogenous nature of institutions (the distribution of the genotype in a society influences the possible institutions)
- Preliminary elements for understanding biological causal pathways

Personality and Economic Analysis Examples of implications

- Social mobility and inequality: not just economic preferences, not just intelligence
- O Strategic behavior:
- Personality and Institutions: the PGS for EA

Genes and Voter participation Dawes, Okbay, Oskarsson, Rustichini, PNAS 2021

Increase in R^2 of voter participation induced by relevant variables including PGS of EA.

< 個 → < Ξ

Some General Implications

U

p to this point there is universal consensus. In the next part we derive some general implications of this analysis.

Warning

What follows is my opinion, perhaps a minority opinion (minority of one).

36 / 45

< □ > < □ > < □ > < □ > < □ >

Two Views

A widespread view of this extension of economic analysis is this:

- Neuroeconomics and Genoeconomics are the foundation of economics on different (more specifically "non-neoclassical") bases.
- **@** Behavioral Economics is the most coherent plan to implement this program

Two Views

My thesis:

- Neuroeconomics, Genoeconomics and Personality Theory are part of a new foundation of economics on a biological basis
- Olassical Economics has a unique understanding of human society, which is the outcome of the modern revolution in social sciences beginning with the modern view of political philosophy (Machiavelli and then Hobbes).
- There are two fundamental concepts have to be preserved, which are the core of the revolutionary understanding provided by economics. Not by chance, they are under relentless critique

< ロ > < 同 > < 回 > < 回 >

Two fundamental concepts of economics 1: Individualism

Economic and social behavior, in all historical periods, is the result of a combination of individual behavior

- **(**) This behavior is well explained by a personal and rational interest
- Onsequently, incentives matter
- Ignoring this fact will not make it go away

39 / 45

(日) (四) (日) (日) (日)

Two fundamental ideas of economy

2: Equilibrium

The process producing social and economic behavior starting from the behavior of individuals is provided by a concept of equilibrium,

- A specific equilibrium is valid in historically determined institutional arrangements
- ² General Economic Equilibrium, Nash Equilibrium.

(日) (四) (日) (日) (日)

- Individual behavior has been in past economic analysis modeled temporarily, and for lack of alternatives, with models "as if" ("Individuals behave as if they are maximizing a utility function")
- Individual behavior has biological underpinnings that we can now begin to understand
- The premise that it is possible to study the biological foundation of human nature is based on the assumption (which can be demonstrated, if is successful) that this foundation exists
- Understanding the genetic basis of these
- O This view produces mechanistic models
- It is the completion of a program that began at the dawn of our civilization (Democritus, Plato, Lucretius, Hobbes).

イロト 不得 トイヨト イヨト

Socrates' Noble Lie

While all of you in the city are brothers, we will say in our tale, yet God in fashioning those of you who are fitted to hold rule mingled gold in their generation, for which reason they are the most precious but in the helpers silver, and iron and brass in the farmers and other craftsmen. And as you are all akin, though for the most part you will breed after your kinds.

Plato Republic, Book III, 414 b.

(日) (四) (日) (日) (日)

The Truth of the Lie

Obviously, then, we must arrange marriages, sacramental so far as may be. And the most sacred marriages would be those that were most beneficial how imperative, then, is our need of the highest skill in our rulers, if the principle holds also for mankind.

Plato Republic, Book V, 458 d.

43/45

(日) (四) (日) (日) (日)

Opposite idea: Idealistic view of society

Opposite to materialistic view¿

- Human nature does not exist but it is exclusively the result of a historical-social process
- Orollary 1: Men are potentially all equal, all differences among men are constructed by society
- Social Corollary 2: every difference between groups is due to discrimination
- Corollary 3: Human Nature infinitely malleable and subject to the transforming action of reason.
 - Reason has to be organized in the state
 - The state can make use of the enlightened advice of intellectuals
 - Citizens will follow the suggestions-indications-mandates of the prince-state

44 / 45

Variants of idealism

- **Istorical** materialism is a variant of the Hegelian left
- The new man
- He is a hunter, a fisherman, a herdsman, or a critical critic, and must remain so if he does not want to lose his means of livelihood; while in communist society, where nobody has one exclusive sphere of activity but each can become accomplished in any branch he wishes, society regulates the general production and thus makes it possible for me to do one thing today and another tomorrow, to hunt in the morning, fish in the afternoon, rear cattle in the evening, criticize after dinner, just as I have a mind, without ever becoming hunter, fisherman, herdsman or critic.

K. Marx-F. Engels, 1846, The German ideology

- In a higher phase of communist society, after the enslaving subordination of the individual to the division of labor, and therewith also the antithesis between mental and physical labor, has vanished; after labor has become not only a means of life but life's prime want; after the productive forces have also increased with the all-around development of the individual, and all the springs of co-operative wealth flow more abundantly –only then can the narrow horizon of bourgeois right be crossed in its entirety and society inscribe on its banners: From each according to his ability, to each according to his needs!
 - K. Marx-F. Engels, 1875, Critique of the Gotha Program