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NeuroEconomics as I see it

Main message

A biological foundation of economics is possible now.

Program

1 Replace ”as if” models with mechanistic models; we care about the realism of
the assumption, and we do not take prediction out of sample as the only criterion to
evaluate a theory

2 Understand genetic determinants of pathways of personality and choice

3 Expand the domain of human personality we consider relevant Francis Hutcheson
“There is no part of Philosophy of more importance, than a just knowledge of
Human Nature, and its various Powers and Dispositions”; David Hume “There is no
question of importance, whose decision is not compriz’d in the science of man”

Let’s consider an example of a mechanistic model
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Padoa-Schioppa Assad, 2006: subjects, task and data
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A general neuro-computational model
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Three types of neurons
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Economic Choice Model
Wong & Wang 2006, Rustichini & Padoa-Schioppa 2015, Rustichini et al., 2018
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Gating variables model, 2D

1 S i is the fraction of gating variables (NMDA receptors) open for good i ;

2

dS i

dt
(t) = −S i (t)

τ
+ (1− S i (t))γϕ(X i ),

for i = A,B, where for i = A,B, j ̸= i ,

X i ≡ J iiS i (t)− J ijS j (t) + I i (t)

J ii , J ij > 0
I i is the input for the option i .
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Economic choices are harder

Aldo Rustichini (Economics, U. of Minnesota) Biological foundation New Delhi, Lec 1 8 / 39



Choice and firing patterns in experimental data
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Probability of choice
Figure 5
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Match of real data and model
Figure 4
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Now we want theorems like these:

Cardinal Utility

Theorem we have a cardinal utility because neurons communicate information in an
additive way

Adaptive Coding

Theorem we have adaptive coding because the spike process is Poisson
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Adaptive Coding (Padoa-Schioppa, 2009)

might also describe the activity of neurons
encoding the chosen value, leading to the
same predicted relationship between
slope and value range.

Regression slope and inverse
value range
Each neuron in our main dataset was re-
corded in one session with one value
range. To test the predictions of the adapta-
tion model, we thus performed a popula-
tion analysis. We studied the distribution of
regression slopes as a function of the value
range (Fig. 4a– c). For each of the three
encoded variables (offer value A, offer
value B, and chosen value), we observe that
regression slopes decrease as a function of
the value range. This phenomenon is par-
ticularly clear when the mean slope is
plotted against the value range (Fig. 4d).
As predicted by the adaptation model, the
relationship between the mean slope and
the inverse value range appears approxi-
mately linear (Fig. 4e). For a statistical
test, we performed a linear fit of the mean
slope onto the inverse value range as fol-
lows: slope � a0 � a1 � 1/�V. The result
obtained for the coefficient a0 does not
differ from zero (95% confidence inter-
val). In other words, the measured rela-
tionship between the mean slope and the
inverse value range is statistically indistin-
guishable from the predicted relationship
slope 	1/�V. Interestingly, this result does
not depend on the particular units used to
express values (see below, Scale
invariance).

Figure 4, d and e, suggests that offer
value A and offer value B responses are in-
deed of the same type and that the differ-
ence in slope distribution (Fig. 2) was due
to the difference in value range. To con-
firm this point, we restricted the compar-
ison of slope distributions to responses
recorded with the same value range. In
this case, we did not find any significant difference between offer
value A and offer value B (analysis performed for �V � 3 and
�V � 4, both p � 0.5, Wilcoxon test). We thus pooled all offer
value responses in subsequent analyses.

Population firing rate
A close match between the activity of neurons in the OFC and the
predictions of the adaptation model can also be observed exam-
ining directly the firing rate of individual neurons as a function of
the encoded value. We first describe the results obtained for the
population of 937 responses encoding the offer value (Fig. 5). For
each response, we subtracted the baseline activity corresponding
to the minimum value available in that session. We then rectified
neuronal responses with negative regression slope and plotted the
resulting firing rate as a function of the encoded value (Fig. 5a).
Different colors in the figure label subpopulations of neuronal
responses recorded with different value ranges. A qualitative in-
spection suggests that the various subpopulations have similar

distribution of maximum firing rates. This point is especially
clear when we average firing rates separately for each subpopula-
tion (Fig. 5b). The emerging picture well matches that of the
adaptation model (Fig. 3a).

To further test the relationship between the neuronal firing
rate and the range of values available in any behavioral condition,
we defined for each neuronal response the activity range �� as
the product between the regression slope and the value range.
Thus, Equation 1 can be rewritten as follows:

� � �0 � �� �
V � V0

�V
, (2)

where �� � c1 � �V is the activity range, �0 � c0 � c1V0 is the
baseline activity, and V0 is the minimum value available in that
session. We then analyzed the distribution of activity ranges at the
population level (Fig. 5c). Multiple statistical analyses found that
the distributions of activity ranges obtained for different sub-

Figure 5. Population firing rate for offer value responses. a, Individual responses. The entire population of 937 neuronal
responses encoding the offer value is shown (offer value A and offer value B responses are combined). Neuronal responses were
baseline-subtracted, rectified and plotted here ( y axis) against the offer value (x axis). Different colors highlight different value
ranges. Qualitatively, we observe that for each value range neuronal activities are broadly distributed. However, the distributions
recorded for different value ranges appear rather similar. b, Average neuronal responses. Each line represents the average neuronal
response obtained for given value range (see color legend). Neuronal adaptation can be observed for any value, as average
neuronal responses recorded with different value ranges are well separated throughout the value spectrum (e.g., compare the
activity recorded at V � 2 for various ranges �V). c, Distribution of activity ranges. Each histogram illustrates the distribution of
activity ranges obtained for the subpopulation of responses recorded with the corresponding value range (color codes as in b).
Small triangles indicate the medians. Several statistical tests failed to find any significant correlation between activity range and
value range ( p � 0.13, Kruskal–Wallis test; p � 0.7, correlation analysis). Analyses in b and c were performed only for subpopu-
lations of at least 40 responses. sp, Spikes.

14008 • J. Neurosci., November 4, 2009 • 29(44):14004 –14014 Padoa-Schioppa • Neuronal Adaptation in the Orbitofrontal Cortex
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Adaptive Coding (Padoa-Schioppa, 2009)

might also describe the activity of neurons
encoding the chosen value, leading to the
same predicted relationship between
slope and value range.

Regression slope and inverse
value range
Each neuron in our main dataset was re-
corded in one session with one value
range. To test the predictions of the adapta-
tion model, we thus performed a popula-
tion analysis. We studied the distribution of
regression slopes as a function of the value
range (Fig. 4a– c). For each of the three
encoded variables (offer value A, offer
value B, and chosen value), we observe that
regression slopes decrease as a function of
the value range. This phenomenon is par-
ticularly clear when the mean slope is
plotted against the value range (Fig. 4d).
As predicted by the adaptation model, the
relationship between the mean slope and
the inverse value range appears approxi-
mately linear (Fig. 4e). For a statistical
test, we performed a linear fit of the mean
slope onto the inverse value range as fol-
lows: slope � a0 � a1 � 1/�V. The result
obtained for the coefficient a0 does not
differ from zero (95% confidence inter-
val). In other words, the measured rela-
tionship between the mean slope and the
inverse value range is statistically indistin-
guishable from the predicted relationship
slope 	1/�V. Interestingly, this result does
not depend on the particular units used to
express values (see below, Scale
invariance).

Figure 4, d and e, suggests that offer
value A and offer value B responses are in-
deed of the same type and that the differ-
ence in slope distribution (Fig. 2) was due
to the difference in value range. To con-
firm this point, we restricted the compar-
ison of slope distributions to responses
recorded with the same value range. In
this case, we did not find any significant difference between offer
value A and offer value B (analysis performed for �V � 3 and
�V � 4, both p � 0.5, Wilcoxon test). We thus pooled all offer
value responses in subsequent analyses.

Population firing rate
A close match between the activity of neurons in the OFC and the
predictions of the adaptation model can also be observed exam-
ining directly the firing rate of individual neurons as a function of
the encoded value. We first describe the results obtained for the
population of 937 responses encoding the offer value (Fig. 5). For
each response, we subtracted the baseline activity corresponding
to the minimum value available in that session. We then rectified
neuronal responses with negative regression slope and plotted the
resulting firing rate as a function of the encoded value (Fig. 5a).
Different colors in the figure label subpopulations of neuronal
responses recorded with different value ranges. A qualitative in-
spection suggests that the various subpopulations have similar

distribution of maximum firing rates. This point is especially
clear when we average firing rates separately for each subpopula-
tion (Fig. 5b). The emerging picture well matches that of the
adaptation model (Fig. 3a).

To further test the relationship between the neuronal firing
rate and the range of values available in any behavioral condition,
we defined for each neuronal response the activity range �� as
the product between the regression slope and the value range.
Thus, Equation 1 can be rewritten as follows:
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where �� � c1 � �V is the activity range, �0 � c0 � c1V0 is the
baseline activity, and V0 is the minimum value available in that
session. We then analyzed the distribution of activity ranges at the
population level (Fig. 5c). Multiple statistical analyses found that
the distributions of activity ranges obtained for different sub-

Figure 5. Population firing rate for offer value responses. a, Individual responses. The entire population of 937 neuronal
responses encoding the offer value is shown (offer value A and offer value B responses are combined). Neuronal responses were
baseline-subtracted, rectified and plotted here ( y axis) against the offer value (x axis). Different colors highlight different value
ranges. Qualitatively, we observe that for each value range neuronal activities are broadly distributed. However, the distributions
recorded for different value ranges appear rather similar. b, Average neuronal responses. Each line represents the average neuronal
response obtained for given value range (see color legend). Neuronal adaptation can be observed for any value, as average
neuronal responses recorded with different value ranges are well separated throughout the value spectrum (e.g., compare the
activity recorded at V � 2 for various ranges �V). c, Distribution of activity ranges. Each histogram illustrates the distribution of
activity ranges obtained for the subpopulation of responses recorded with the corresponding value range (color codes as in b).
Small triangles indicate the medians. Several statistical tests failed to find any significant correlation between activity range and
value range ( p � 0.13, Kruskal–Wallis test; p � 0.7, correlation analysis). Analyses in b and c were performed only for subpopu-
lations of at least 40 responses. sp, Spikes.
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Kobayashi, de Carvalho, Schultz, 2010
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Kobayashi, de Carvalho, Schultz, 2010
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Why Adaptive coding: how not to find an answer (Wong & Wang 2006)

Wang’s model ignores the dependence on mean and SD on firing rate, assuming an
input equal to the sum of a constant plus a constant coefficients OU process;

Adaptive coding in this way is either useless or impossible

We want to explain it from first principles
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The rule of the game

Voltage in a neuron evolves according to

V (t + dt)− V (t) = −g(V (t)− VL)dt

+ JE (NE (t + dt)− NE (t))− JI (NI (t + dt)− NI (t))

J’s are current inputs, N’s are Poisson processes

When V (t) reaches a threshold value Vth, the neuron fires,

The voltage is reset to a Vr value and the process starts again

We want to explain adaptive coding with just these elements:
Theorem We have adaptive coding because the spike process is Poisson
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Poisson process
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Poisson process
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Poisson process
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It all follows from the Poisson property Mean = Variance
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What does this property do for you? A simple example

1 Two offers in quantities (x , y), with known joint symmetric distribution
π ∈ ∆(X × Y )

2 You do not observe the (x , y), but a signal on it

3 You can choose one of the two options (action set {1, 2});
4 Two signals X ∼ N(sx , sx) and Y ∼ N(sy , sy); you only observe the difference

between the two,
D ≡ X− Y

5 You want to get the largest expected payoff; to do this you can pick any s ∈ S
(say s smaller than a given maximum), and after the observation of D you can
choose 1 or 2
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A very simple example

1 The optimal choice of action conditional on signal (by symmetry) is: choose 1 if and
only if the signal D is positive

2 Let Q(x,y)(·|s) the probability of D given the pair (x , y) and slope s; note that for a
given pair (x , y) and slope s

D ∼ N(s(x − y), s(x + y))

3 By the point 1. above:

probability of choosing 1 at ((x , y), s) = Q(x,y)(R
+|s)

4 The largest expected payoff is

max
s∈S

∫
X×Y

(
Q(x,y)(R

+|s)x + Q(x,y)(R
−|s)y

)
dπ =

∫
X×Y

ydπ +max
s∈S

∫
X×Y

Q(x,y)(R
+|s)(x − y)dπ

so we focus on Q(x,y)(R
+|s)
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A very simple example

1

Q(x,y)(R
+|s) = P

(
Z ≥ − mean

standard deviation
|Z ∼ N(0, 1)

)
= P

(
Z ≥ − (x − y)

√
s√

x + y
|Z ∼ N(0, 1)

)
so increasing s makes the probability of choosing 1 when x ≥ y larger, and the
probability of choosing 1 when x ≤ y smaller.

2 Hence the payoff increases with s and the optimal policy is to choose s as large
as possible.

3 BUT
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might also describe the activity of neurons
encoding the chosen value, leading to the
same predicted relationship between
slope and value range.

Regression slope and inverse
value range
Each neuron in our main dataset was re-
corded in one session with one value
range. To test the predictions of the adapta-
tion model, we thus performed a popula-
tion analysis. We studied the distribution of
regression slopes as a function of the value
range (Fig. 4a– c). For each of the three
encoded variables (offer value A, offer
value B, and chosen value), we observe that
regression slopes decrease as a function of
the value range. This phenomenon is par-
ticularly clear when the mean slope is
plotted against the value range (Fig. 4d).
As predicted by the adaptation model, the
relationship between the mean slope and
the inverse value range appears approxi-
mately linear (Fig. 4e). For a statistical
test, we performed a linear fit of the mean
slope onto the inverse value range as fol-
lows: slope � a0 � a1 � 1/�V. The result
obtained for the coefficient a0 does not
differ from zero (95% confidence inter-
val). In other words, the measured rela-
tionship between the mean slope and the
inverse value range is statistically indistin-
guishable from the predicted relationship
slope 	1/�V. Interestingly, this result does
not depend on the particular units used to
express values (see below, Scale
invariance).

Figure 4, d and e, suggests that offer
value A and offer value B responses are in-
deed of the same type and that the differ-
ence in slope distribution (Fig. 2) was due
to the difference in value range. To con-
firm this point, we restricted the compar-
ison of slope distributions to responses
recorded with the same value range. In
this case, we did not find any significant difference between offer
value A and offer value B (analysis performed for �V � 3 and
�V � 4, both p � 0.5, Wilcoxon test). We thus pooled all offer
value responses in subsequent analyses.

Population firing rate
A close match between the activity of neurons in the OFC and the
predictions of the adaptation model can also be observed exam-
ining directly the firing rate of individual neurons as a function of
the encoded value. We first describe the results obtained for the
population of 937 responses encoding the offer value (Fig. 5). For
each response, we subtracted the baseline activity corresponding
to the minimum value available in that session. We then rectified
neuronal responses with negative regression slope and plotted the
resulting firing rate as a function of the encoded value (Fig. 5a).
Different colors in the figure label subpopulations of neuronal
responses recorded with different value ranges. A qualitative in-
spection suggests that the various subpopulations have similar

distribution of maximum firing rates. This point is especially
clear when we average firing rates separately for each subpopula-
tion (Fig. 5b). The emerging picture well matches that of the
adaptation model (Fig. 3a).

To further test the relationship between the neuronal firing
rate and the range of values available in any behavioral condition,
we defined for each neuronal response the activity range �� as
the product between the regression slope and the value range.
Thus, Equation 1 can be rewritten as follows:

� � �0 � �� �
V � V0

�V
, (2)

where �� � c1 � �V is the activity range, �0 � c0 � c1V0 is the
baseline activity, and V0 is the minimum value available in that
session. We then analyzed the distribution of activity ranges at the
population level (Fig. 5c). Multiple statistical analyses found that
the distributions of activity ranges obtained for different sub-

Figure 5. Population firing rate for offer value responses. a, Individual responses. The entire population of 937 neuronal
responses encoding the offer value is shown (offer value A and offer value B responses are combined). Neuronal responses were
baseline-subtracted, rectified and plotted here ( y axis) against the offer value (x axis). Different colors highlight different value
ranges. Qualitatively, we observe that for each value range neuronal activities are broadly distributed. However, the distributions
recorded for different value ranges appear rather similar. b, Average neuronal responses. Each line represents the average neuronal
response obtained for given value range (see color legend). Neuronal adaptation can be observed for any value, as average
neuronal responses recorded with different value ranges are well separated throughout the value spectrum (e.g., compare the
activity recorded at V � 2 for various ranges �V). c, Distribution of activity ranges. Each histogram illustrates the distribution of
activity ranges obtained for the subpopulation of responses recorded with the corresponding value range (color codes as in b).
Small triangles indicate the medians. Several statistical tests failed to find any significant correlation between activity range and
value range ( p � 0.13, Kruskal–Wallis test; p � 0.7, correlation analysis). Analyses in b and c were performed only for subpopu-
lations of at least 40 responses. sp, Spikes.

14008 • J. Neurosci., November 4, 2009 • 29(44):14004 –14014 Padoa-Schioppa • Neuronal Adaptation in the Orbitofrontal Cortex
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A potential problem

Good A Good B

x y

Max rate
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A potential problem: HUGE environment bias (?)

Good A Good B

x y

Max rate

Aldo Rustichini (Economics, U. of Minnesota) Biological foundation New Delhi, Lec 1 32 / 39



But is the bias there?
Figure 4
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The real neural problem

1 The input to the downstream neuron are the product of spikes per unit of time,
times inputs (JA and JB) that depend on the session not on the trial offer

2 Assume the firing rate is linear in the quantity offered, eg for good A

firing rate = sAx

3 (Britten et al., VN, 1995): A relationship between behavioral choice and the visual
response of neurons in macaque MT.

4 Neurons do not fire independently; correlation coefficient ρ > 0; higher ρ, higher
variance of the signal.
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Rates and Inputs

max
(sA,JA,sB ,JB )

∫
X×Y

P
(
Z ≥ − mean

standard deviation
|Z ∼ N(0, 1)

)
(x − y)dπ(x , y)

where

mean

standard deviation
=

sAxJA − sByJB
(ρ(sAxJ2

A + sByJ2
B))

1/2

=
sAx − sByR

(ρ(sAx + sByR2))1/2

R ≡ JB
JA

; sAx ≡ firing rate for good A, JA ≡ input for good A

subject to:

∀g ∈ {A,B}, 0 ≤ sg ≤ s

Mg
,R ≥ 0.

π uniform on [0,MA]× [0,MB ]
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Optimal solution

1 The slopes are at the maximum values,

sg =
s

Mg

2 R adjusts to compensate and reduce the difference

sAJA − sBJB

to close to zero,

3 large values of ρ or large differences between MA and MB introduce a bias

4 The bias is optimal in extreme cases
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Optimal firing rates and inputs: symmetric case, sA = sB ≡ s
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Optimal ratio R, range of good B and neuronal correlation
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Optimal ratio R versus range of good B
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