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NeuroEconomics as | see it

Main message

A biological foundation of economics is possible now.

Program

© Replace "as if” models with mechanistic models; we care about the realism of
the assumption, and we do not take prediction out of sample as the only criterion to
evaluate a theory

@ Understand genetic determinants of pathways of personality and choice

© Expand the domain of human personality we consider relevant Francis Hutcheson
“There is no part of Philosophy of more importance, than a just knowledge of
Human Nature, and its various Powers and Dispositions”; David Hume “There is no
question of importance, whose decision is not compriz'd in the science of man”

Let's consider an example of a mechanistic model
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Padoa-Schioppa Assad, 2006: subjects, task and data
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A general neuro-computational model

—> AMPA
---» NMDA
—=@ GABA interneurons
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Three types of neurons
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Economic Choice Model

Wong & Wang 2006, Rustichini & Padoa-Schioppa 2015, Rustichini et al., 2018

—> AMPA
-=--» NMDA
—@ GABA
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Gating variables model, 2D

@ S’ is the fraction of gating variables (NMDA receptors) open for good 7 ;

(2]
+ (1= S"())e(X),

ds’ Si(t)
gt (="
=
o for i = A, B, where for i = A, B,j # i,
X' = Jisi(t) — JUSI(t) + I'(¢)

o Ji Ji>0
o /' is the input for the option i.
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Economic choices are harder
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Choice and firing patterns in experimental data

a Offer value cells
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Probability of choice
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Match of real data and model
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Now we want theorems like these:

Cardinal Utility

Theorem we have a cardinal utility because neurons communicate information in an
additive way

Adaptive Coding

Theorem we have adaptive coding because the spike process is Poisson
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Adaptive Coding (Padoa-Schioppa, 2009)
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-
Adaptive Coding (Padoa-Schioppa, 2009)

Average firing rate (sp/s)
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Kobayashi, de Carvalho, Schultz, 2010
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Kobayashi, de Carvalho, Schultz, 2010
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Kobayashi, de Carvalho, Schultz, 2010
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Why Adaptive coding: how not to find an answer (Wong & Wang 2006)

The mean-field approach does not include time-varying noise that plays
a critical role in the spiking neural network. To amend this, we added a
noise term I, ;.. implemented as a white noise filtered by a short (AMPA
synaptic) time constant. This is thus described by an Ornstein—Uhlen-
beck process (Uhlenbeck and Ornstein, 1930) (for example, see Destexhe

etal.,, 2001):
lise(1) ———
ois >
TAMPAT g ~Loise() + () \ TampaTroise>
where o7, is the variance of the noise, and 7 is a Gaussian white

noise with zero mean and unit variance. Unless specified, o, is

fixed at 0.007 nA.

noise

@ Wang's model ignores the dependence on mean and SD on firing rate, assuming an
input equal to the sum of a constant plus a constant coefficients OU process;

@ Adaptive coding in this way is either useless or impossible

@ We want to explain it from first principles
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The rule of the game

@ Voltage in a neuron evolves according to

V(t+dt)—V(t) = —g(V(t)— Vi)dt
+  Je(Ne(t + dt) — Ne(t)) — Ji(Ni(t + dt) — Ni(t))

J's are current inputs, N's are Poisson processes
© When V/(t) reaches a threshold value Vi, the neuron fires,
@ The voltage is reset to a V, value and the process starts again

@ We want to explain adaptive coding with just these elements:
Theorem We have adaptive coding because the spike process is Poisson
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Poisson process

Three Poisson processes, rate 5, 10and 15
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Poisson process

Three Poisson processes, rate 5, 10and 15
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Poisson process

Three Poisson processes, rate 5, 10and 15
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It all follows from the Poisson property Mean = Variance

Three Poisson processes, rate 5, 10and 15

Frequency
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What does this property do for you? A simple example

© Two offers in quantities (x, y), with known joint symmetric distribution
T eAXXY)

You do not observe the (x,y), but a signal on it

You can choose one of the two options (action set {1,2});

© 00

Two signals X ~ N(sx,sx) and Y ~ N(sy, sy); you only observe the difference
between the two,
D=X-Y

© You want to get the largest expected payoff; to do this you can pick any s € S
(say s smaller than a given maximum), and after the observation of D you can
choose 1 or 2
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A very simple example

@ The optimal choice of action conditional on signal (by symmetry) is: choose 1 if and
only if the signal D is positive

@ Let Q,)(:|s) the probability of D given the pair (x,y) and slope s; note that for a
given pair (x,y) and slope s

D~ N(s(x —y),s(x +y))
© By the point 1. above:

probability of choosing 1 at ((x,y),s) = Q,)(R"|s)

@ The largest expected payoff is

max [ (Qu(RYIs)x-+ (R [s)y) dr =
sE€S Sxxy

/ yd7r+max/ Qi) (RT[s)(x — y)dm
XxY

so we focus on Q(x.)(R]s)
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A very simple example

Q) (R"[5)

mean
P(Zz>—————|Z~ N(0,1
( — standard deviation| ©, ))

_ _x=ys,
= P(zz Nes 4 N(O,l))

so increasing s makes the probability of choosing 1 when x > y larger, and the
probability of choosing 1 when x < y smaller.

@ Hence the payoff increases with s and the optimal policy is to choose s as large
as possible.

@ BUT
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Average firing rate (sp/s)
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A potential problem

Max rate

Good A Good B
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A potential problem

Max rate
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A potential problem: HUGE environment bias (?)

Max rate

Good A Good B
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But is the bias there?

Boniek

=X
©

25

Indifference point for range ratio AA/AB

O [20A, AB]=>[ AA, AB] Lois
@ | O [ AA AB]=>[ AA24B] o ,
O [ AA, AB]=>[24A, AB] L7
O [ AA2AB]=>[ AA, AB] R
. .
. X
25 coo

2 2
(o]
0 ° DD% B o
15 15 g/né
0B
/HD@
1{ 1 ’
1 1.5 2 25 3 1 1.5 2 25 3

Indifference point for range ratio AA/AB = 2X

Aldo Rustichini (Economics, U. of Minnesota)

Indifference point for range ratio AA/AB = 2X

Biological foundation New Delhi, Lec 1

33/39



The real neural problem

@ The input to the downstream neuron are the product of spikes per unit of time,
times inputs (Ja and Jg) that depend on the session not on the trial offer

@ Assume the firing rate is linear in the quantity offered, eg for good A
firing rate = sax

@ (Britten et al., VN, 1995): A relationship between behavioral choice and the visual
response of neurons in macaque MT.

@ Neurons do not fire independently; correlation coefficient p > 0; higher p, higher
variance of the signal.
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Rates and Inputs

mean
PlZ>———————|Z~ N(0,1 —vy)d
(sA,?:i;(,JB)/XXy ( — standard deviation| ©, )) (x = y)dn(x.y)

where

mean saxJa — sgyJs
standard deviation (p(saxJ2 + sgyJ3))1/?
_ sax — sgyR
— (p(sax + ssyR2))1/2
R= j—j; sax = firing rate for good A, J4 = input for good A

subject to: B
Vg e {A B}, 0<s, <>, R>0.
Mg

m uniform on [0, Ma] x [0, Mg]
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Optimal solution

@ The slopes are at the maximum values,

@ R adjusts to compensate and reduce the difference
SAJA — SBJB

to close to zero,
© large values of p or large differences between My and Mg introduce a bias

@ The bias is optimal in extreme cases
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Optimal firing rates and inputs: symmetric case, sy
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Optimal ratio R, range of good B and neuronal correlation

Aldo Rustichini (Economics, U. of Minnesota) Biological foundation New Delhi, Lec 1 38/39



Optimal ratio R versus range of good B

Optimal R
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