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Introduction: new Covid-induced research

Macro problems
Unprecedented pb: economic assessment of (global) NPIs under
health system capacity constraints and radical uncertainty
(asymptomatic, a.o). However, the vast majority of epi-econ
models consider frictionless central planner problems with
continuous time and continuous lockdown intensity!!!
Other novelty for the overwheling majority of economists:
modeling of epidemic diffusion through the incorporation of
compartmental epidemiological sub-models. Epi-econ modelling.
However, most the compartmental models are simplistic, and can
hardly serve for the design of policy.
Major complication 1: strong heterogeneity across economic sectors
(demand vs supply-constrained sectors). Close look at the supply
chain needed.
Major complication 2: Heterogeneity of social contacts across
socioeconomic classes.
Major complication 3: Under radical uncertainty, public authorities
can hardly their decisions maximizing expected social welfare onver
an infinite horizon: rather sequential decisions along with learning.
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Micro problems

No way to understand epidemic diffusion if the incentives for
individuals to comply with NPIs are not understood! Need to
understand the determinants of this compliance and to identify it
through adequate micro data.

Huge complications: heterogenous incentives (eg. age) and decisions
under radical uncertainty (no science and governments’ lack of
credibility, already before Covid- rise of populism, also invidivuals
learning). Role of social communities and networks in epidemic
dynamics.

Mental health should be thoroughly included in epi-econ models for
realism. How to incorporate mental health in epi-econ settings? And
how to identify it empirically?
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Outlines of this lecture

1 Introduction: Introduction: new Covid-induced research
2 Balancing economic and epidemiological interventions in
the early stages of pathogen emergence

3 Economic behavior in the face of epidemics, mental health
and control policies

4 Concluding: open problems



Optimal interventions in the early stages of pathogen emergence

Policy frictions and learning of the ”global player”

The optimal health policy problem typically adressed in the recent
Covid literature considers infinite horizons, and especially,
continuous time control variables. This is far unrealistic:
governments face short time horizons under emergency and have to
deal with a number of heavy frictions.

Optimal policies are rather piecewise constant and should be
searched in this functional set with finite number of phases to reflect
frictions.

Other frictions: capacity constraints (notably on testing) ,
implementation delays....

Moreover, governments also ”learn” just like individuals under
radical uncertainty but do ”global players” learn in the same way?



Optimal interventions in the early stages of pathogen emergence

Dobson, Ricci, Boucekkine et al, 2022
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Major contributions 1

First of all, the development of an expanded SEIR model accounting
for a larger set of possible states for the hosts in an attempt to
consider the dynamics of isolating and testing contacts of infected
hosts, that may themselves develop infections. This is made possible
by the interdisciplinary nature of this research.

Second, the conceptual design of realistic epidemic control policies
subject to inefficiencies resulting from “economic frictions” inherent
in the implementation of such policies.

A partial list of these frictions includes incomplete information,
transactions costs associated with initiating multiple rounds of
lockdowns in rapid succession, incomplete enforcement, and costs
associated with transitions in and out of lockdown.

By improving the realism of both epidemic dynamics and policy
modelling we can better understand the structure of the mechanisms
through which public health and economic factors interact.
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Major contributions 2

Unlike the majority of epi-econ models, we use a
finite-horizon model in order to concentrate on short-term
outcomes.

More precisely, we build a framework that provides insights
on how policy makers should respond in the first two years
of a novel emergent pathogen for which:

1 there is very limited epidemiological information,
2 there are no available specific drugs or vaccines,
3 tests for infectivity are in the early stages of development, and
4 tracing may not be efficient
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Major contributions 3

Given these constraints, a lockdown is one of the main tools
available to policy-makers. We specifically depart here from the
common assumption that lockdown policies can be adjusted in
continuous time and consider that they take place in a finite number
of phases, the lockdown parameters (intensity of the lockdown and
duration) being optimally chosen at each phase. This requires a
novel numerical optimization approach.

In addition, we incorporate technological implementation delays (e.g.
in efficient testing) and capacity constraints (e.g. in test/mask
production). This in turn allows to compare optimal control policies
for countries at different levels of development, or governments with
different levels of concern for the welfare of their citizens/workforce.

Last but not least, we reltivdetermine the optimal menu (lockdown
phases, testing phases), with or without implementation delays.
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Epi model, Dobson et al., 2022
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The compartmental epidemic model 1
We have modified the basic SEIR formulation by dividing the
exposed (E) and infectious (I) classes into two sequential classes, E1

and E2 and I1 and I2.

Exposed hosts, who are not yet infectious are classified as E1, while
asymptomatic, contagious hosts are classified as E2. We assume that
E1 individuals transform to E2 at an exponential rate determined by
φ1. The pre-symptomatic hosts, E2, transform to symptomatic
infected hosts, I1, at a rate φ2. Both E2 and I1 are infectious.

This rate largely determines the duration of time during which
exposed hosts are able to transmit infection before they show
symptoms of infection. If φ2 is large (∼ 365) (around one day), then
exposed hosts quickly exhibit signs of symptoms and can be
identified as infectious (as occurred with SARS).

In contrast, if φ2 is slower (∼365/7) (a week), then asymptomatic
hosts may transmit the disease for up to a week before showing
symptoms, as in the case of Covid-19 (or many years in the case of
HIV or TB, when φ2 may range from 0.1 to 0.5).
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The compartmental epidemic model 2

In a similar way, infected hosts, I1, may become sick and get
hospitalized, I2. These hosts have a higher mortality rate, but are
assumed to be in relative isolation and are thus unable to transmit
the pathogen, except to unprotected health care workers.

The majority of the pathogen-induced mortality occurs in the I2
class.

We also include an additional class, C , into our model structure,
these are contacts of infectious hosts who do not develop infection.
Contact tracing identifies C + E1 + E2 as contacts of infected hosts,
testing is used to differentiate uninfected contacts, C , from exposed
hosts (E1 and E2); the former can return to work, the latter remain
in isolation and go on to develop infection.
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Main equations of the epi model



Optimal interventions in the early stages of pathogen emergence

The economic structure

Y (t) = A(t) [(1− p(t))L(t)]α︸ ︷︷ ︸
production function

− Φ(x(t))︸ ︷︷ ︸
testing cost

where

A(t) = A0(1− p(t))∆

L(t) = S(t) + ϵC [C (t) + E1(t) + E2(t)] + R(t)

Φ(x) = ρ0x + exp

(
ρ1

N − x

)
− exp

(ρ1
N

)
x(t) = τ [C (t) + E1(t) + E2(t) + rS(t)] ,
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Optimal interventions
The objective of the policy-maker is to maximize the Total Social Welfare
(TSW) function, this is given by:

TSW (T ) =

∫ T

0

U(Y (t))− θV (Dc(t))dt (1)

with:

U(Y ) =
Y 1−σ

1− σ

V (Dc) =
Dω

c

ω

In the above expressions, U(Y ) stand for the satisfaction (utility) from
consuming goods and services, while V (Dc) stands for the direct utility
loss of lives lost.
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Some results 1: lockdown (alone) vs laissez-faire
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Some results 2: optimal combination lockdown with
testing



Lockdown, economic behavior and mental health

Adda, Boucekkine and Thuilliez, 2022
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Homo economicus in the face of epidemic control

The standard epidemic diffusion equation builds on a crucial
parameter, usually denoted β, the so-called transmission rate,
which measures the intensity of contagion of susceptible individuals
iby infected individuals at any time.

Generally speaking, the transmission rates, β, are the product of the
contact rates times the transmission probability upon contact.
However, while the latter are intrinsic transmission probabilities, and
as such, will be taken as biological parameters in calibrations, the
contact rates depend on individuals’ mobility, and as such, they are
endogenous.

While the β have been largely endogenized at the macro level in the
recent epi-econ burst via epidemic control policies (like lockdown),
individual mobility decisions in response to this control are seldom
taken into account. And are even more rarely taken to data.

We summarize here in a few slides this behavioral part of the theory
devoloped by Adda, Boucekkine et Thuilliez (2022).
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Key point: Mental health
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Heterogenous multiclass populations: the epidemic model
with all susceptibles asymptomatic

Si,t+1 − Si,t = −

(
n∑

i ′=1

βii ′t
Ii ′,t
Ni ′t

)
Si,t , (2)

Ii,t+1 − Ii,t =

(
n∑

i ′=1

βii ′t
Ii ′,t
Ni ′t

)
Si,t − γit Ii,t , (3)

Ri,t+1 − Ri,t = γit Ii,t , (4)

Ni,t+1 = Ni,t − γit Ii,t . (5)
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Individual mobility: spatial setting

Let d̄ measures the stringence of the lockdown: in the French
context, it used to correspond to the 1 km distance the individuals
who decide to leave home should not exceed. The associated
reference spatial set is therefore a circle of radius d̄ : if an individual
decides to go beyond this circle, she has to pay a penalty if caught.

Modelling epidemic diffusion settings is a an old topic in
epidemiology ranging from the directed spatial diffusion model of
Milner (2008) to the discrete space version of Sattenspiel et al
(1995). We borrow a simpler model of individual mobility using a
spatial kernel with constant population density, f , over space (Hu,
2013).

Easy to extend to space partitioned in a finite number of regions
with different densities.
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Individual mobility: social contacts

Differently from Hu (2013), our population is heterogenous with
n ≥ 2 classes. Therefore, we cannot work with the benchmark
assumption that individuals have the same (constant) fraction k
(0 < k < 1) of contacts among the calculated effective population.
The old may have more contacts than the young or vice versa.

In line with the sociological literature, we assume that the inter and
intra-class counterparts of the constant number k is a square matrix
K (kij), where i , j = 1, 2, ..., n. Any element kij of this matrix gives
the (average) fraction of contacts an individual in class i may have
among the calculated effective population in class j .

Remaining hot question: how to compute the number of contacts an
individual of class i might have when moving within or outside the
circle?
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Computing contacts for homogenous populations
We build on the nonlinear spatial kernel proposed by Hu (2013). For
an homogenous population (density f ) and individuals confined
within a circle of radius, rmax , with a constant fraction of contact k
among effective population, the contact rate, c(f ) of a given
individual is given by:

c(f , k) =

∫
ϕf ,k(r) dθdr = 2π

∫ rmax

0

ϕf ,k(r) rdr

ϕf ,k(r) is the spatial kernel, which is parameterized by the density f
and the contact fraction k . We choose:

ϕf ,k(r) = k f e−( f
f0
)α rβ

,

where f0, α and β are parameters to be calibrated. Functions ϕf ,k(r)
are generalized exponentials. The case α = 1 and β = 2α yields the
well-known Gaussian density:

ϕf ,k(r) = k f e−
f
f0

r2
.
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Computing contacts: generalization

We first set rmax = di,j in the contact rates formulas above, resulting
in endogenous contact rates.

We can easily compute the contact rate of an individual j in class i
with individuals in class i ′ adapting the formula above and using the
social contact matrix K :

c ji,i ′(f ,K ) = ki,i ′ f

∫ dij

0

e−
f
f0

r2 2πrdr

Because the integral on the right hand side can be computed
explicitly, one gets a nice closed-form expression for the contact rate
c ji,i ′(f ,K ). Indeed, we can readily show that:

c ji,i ′(f ,K ) = πki,i ′ f0
(
1− e−

f
f0

d2
i,j

)
.
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Learning in a world of uncertainty
We consider a world in a state θ which can take two values: 1 if
confinement is needed and 0 else. At time t=0, an individual j of
class i has a prior belief qij(0) that the world is in state 1. Similar to
Adhvaryu (2014).
Then at each time t ⩾ 1 , agents receive a public signal between
two different possible signals Rt0 and Rt1 depending on the number
of hospitalizations at time t − 1: If this number is below a certain
threshold the signal is Rt0, else it is Rt1.
Indeed, we assume people know the distribution of signals
conditionally to the state of the world: P(Rti |θ), i = 0, 1. Therefore,
people infer the new belief using the following Bayesian formula:

qij(t) = P(θ = 1|qij(t − 1);Rt−1i )

=
P(Rti |θ = 1)Pt−1(θ = 1)

P(Rti |θ = 1)Pt−1(θ = 1) + P(Rti |θ = 0)Pt−1(θ = 0)

=
qij(t − 1)P(Rti |θ = 1)

qij(t − 1)P(Rti |θ = 1) + (1− qij(t − 1))P(Rti |θ = 0)
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Individual decisions timing

We shall consider the following timing at each decision period t ≥ 1 for
any individual j of class i .

1 For given prior belief qij(t − 1) at the beginning of period t, the
individual solves her optimization problem for period t , takes and
exercizes her consumption and mobility decisions for the period.

2 At the end of period t, after receing the public information and
collecting own private information, the individual updates her belief
and forms qij(t)
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Individual decisions: mental health
Define d∗

ij the desired travel distance in the absence of the epidemic
that is individual specific. Prior to the Covid crisis, each individual
chooses a travel distance dij(t) = d∗

ij (t) for any prior date t.
During the epidemic, individuals have their travel curtailed either for
fear of being fined or for fear of contamination. Denote by the
mij(t) the cumulative missed distance since the start of the epidemic
to time t. This stock evolves as:

mij(t) = (1− δ)mij(t − 1) +
d∗
ij (t)− dij(t)

d∗
ij (t)

(6)

where δ is the depreciation rate of this stock.
We model mental health as:

hij(t) = 1 +
αm(i , j)

2
mij(t)

(
1 + (d∗

ij (t)− dij(t)
)αd ) (7)

with αd ≥ 0. The term
(
d∗
ij (t)− dij(t)

)αd captures the short-run
impact of mobility restrictions on mental health while the stock
variable mij(t) represents the long-run effect of these mobility
restrictions.
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Individual program

The agent solves the following program by choosing the optimal distance
travelled in each period, t, taking into account the presence of a
lockdown and the prevalence of the disease:

max
dij

V (Cij , dij) = Cij(dij)− γd(hij , D̄, t)(d∗
ij − dij)

2 − ℵ(dij , It−1)

with
Cij(dij) = rWij − IL(t)qij(t − 1)Tax max(0; dij − d̄),

γd(hij , D̄, t) = γ0 + γ1IL(t)(D̄ + tL − t) + γ3hij

ℵ(dij , I (t − 1)) = ℵj

(
n∑

i ′=1

ki,i ′ Ii ′(t − 1)

)
f0
(
1− e−

f
f0

(di,j )
2
)
.
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Tradeoffs involved by mobility

We can decompose the marginal benefit of mobility, MBMij , as:

2γd(hij , D̄, t) (d∗−d)+γ3
∂γd
∂hij

∂hij
∂mij

∂mij

∂d
(d∗−d)2+γ3

∂γd
∂hij

∂hij
∂d

(d∗−d)2.

The first term of the marginal benefit measures the welfare benefit
from closing the gap with the desirable distance d∗, while the two
last terms measure respectively the long and short-run effect of
mobility on mental health.

The marginal cost of mobility, MCMij is given by:

MCMij = qijTax Id +
∂ℵ(d , I (t − 1))

∂d
,

where Id is an indicator lockdown violation by the individual.
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The particular case, αd = 0 (matched by our data)

αd = 0 covers the case where the short-term impact of mobility
restrictions on mental health is found negligible.

Subsequently, the first-order optimality condition can be developed
as:

2γd(hij , D̄, t) (d∗−d)+γ3
αm(i , j)

d∗ (d∗−d)2 = qijTax Id+2Θij
f

f0
d e−

f
f0
d2

,

with

Θij = ℵj

(
n∑

i ′=1

ki,i ′ Ii ′(t − 1)

)
f0.
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One optimality property (among many)

Let’s focus at the minute on the interplay between the density parameter
f , the policy variable, d̄ , and the state variables, Ii (t − 1).

Proposition

Denote by d f =
√

f0
2f , and suppose d̄ < d f < d∗. Then if F (d̄) < G (d̄),

there exist a unique solution, do , to the FOC, such that do < d̄ . do is
optimal.

Proposition 1 can be therefore rephrased as follows: If the population
density is intermediate (or not too small) such that the threshold d̄ is
smaller than d f , and provided the infection rates are large enough, the
individual will comply strictly with the lockdown.
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Paris

Individuals in Paris have potentially a choice to leave the capital and
its cramped living spaces to settle elsewhere in France, where we
assume they have family.

Hence their choice is binary, stay in Paris or move out to a
pre-specified place. We assume that they are unable to forecast the
epidemic and their precise mobility decisions in the future.

They base their judgement on their desired mobility in Paris (d∗
ij )

and on the announced length of the lockdown.

Prob(Leavingij) = Φ(D̄d∗
ij − csti ) (8)

where csti is a fixed cost of leaving that can vary by class. Hence,
the longer the lockdown the more individuals are prone to leave.
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Application: France during the two first lockdowns
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Five datasets

1 For the pandemic, daily cases and hospitalizations by age and
region are available from Santé Publique France. These data will
be compared to the predictions of the SIR model.

2 For mobility, we use mobile phones data (Orange, SFR) to
calculate weekly variations of mobility by age.

3 For mental health, we use data from from Open Health
Company

We could use different sources (SNDN, Surveys), our data fits with
different sources.
We use weekly sales of psychotropic drugs (Antipsychotics,
Anxiolytics, Opioids, Antidepressants) by age group and pharmacy
(geolocalised).
Weekly changes in volume sold or quantity of substance are used to
estimate the mental health portion of the model.
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Drugs Consumption

We use data on weekly sales of psychotropic drugs in France
(aggregated data from individual sales receipts from a representative
sample of French pharmacies).

4D Dataset: Time (week) x Place (Pharmacy) x Drugs class x Age
group

Antipsychotics (ATC code N05A), anxiolytics (N05B), hypnotics and
sedatives (N05C) and antidepressants (N06A)

Drug Usage= Packs sold x Pills in pack x mg/Pills
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Mental health fit
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Hospitalisations fit



Concluding: some sets of open problems

Open problems 1: Two-sided learning and belief
manipulation

In the previous optimal mobility problem, individuals learn along the
way about the opportunity of holding a lockdown and complying
with it.

Under radical uncertainty, not only the individuals learn, the
scientists and...the public authorities also do.

So, an ideal setting should include a two-sided learning scheme.

However, this learning scheme cannot be symmetric, and strategic
aspects can hardly be omitted. Normally the public authorities have
a better information. There exist an incentive for these
authorities to use their superior information to manipulate
beliefs in order to reach their objectives in terms of epidemic
control.

Analogous case in the literature: Cisternas (2018) on inflation
control.
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Open problems 2: biodiversity dynamics and zoonotic
diseases

Much has been said about the connection of zoonotic diseases with
biodiversity depletion. Preservation policies discussed. A nice
analysis can be found in Augeraud et al. (2021).

However, almost systematically authors reduce the analysis of
biodiversity dynamics to deforestation, that’s to land use (habitat
destruction). Clearly there is much more in biodiversity dynamics
than deforestation.

Moreover, the literature omits the key (real) zoonotic disease
transmission mechanism: consumption of bush meat.

A much better combination of multispecies math ecological models
with two-sector agricultural modeling is needed. Ongoing work on
this (data on bush meat consumption in a sample of African
villages).
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