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Abstract. In many accident contexts, the expected accident harm depends on ob-

servable as well as unobservable dimensions of the precaution exercised by the parties

involved. The observable dimensions are commonly referred to as the ‘care’ levels and

the unobservable aspects as the ‘activity’ levels. In a seminal contribution, Shavell

(1980) extended the scope of the economic analysis of liability rules by providing a

model that allows for the care as well as activity level choices. Subsequent works have

used and extended Shavell’s model to predict outcomes under various liability rules,

and also to compare their efficiency properties. These works make several claims about

the existence and efficiency of equilibria under different liability rules, without provid-

ing any formal proof. In this paper, we re-examine the prevalent claims in the literature

using the standard model itself. Contrary to these prevalent claims, we show that the

standard negligence liability rules do not induce equilibrium for all of the accident

contexts admissible under the model. Under the standard model, even the ‘no-fault’

rules can fail to induce a Nash equilibrium. In the absence of an equilibrium, it is not

plausible to make a claim about the efficiency of a rule per-se or vis-a-vis other rules.

We show that even with commonly used utility functions that meet all of the require-

ments of the standard model, the social welfare function may not have a maximum.

In many other situations fully compatible with the standard model, a maximum of

the social welfare function is not discoverable by the first order conditions. Under

the standard model, even individually optimum choices might not exist. We analyze

the underlying problems with the standard model and offer some insights for future

research on this subject.
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1. Introduction

In many tort settings, the probability of an accident depends on observable as well as

unobservable dimensions of the care exercised by the parties involved. In the literature

on liability rules, the observable dimensions are commonly called the ‘care’ levels and

the unobservable aspects of care are referred to as the ‘activity’ levels. In a pioneering

contribution, Shavell (1980) extended the scope of the economic analysis of liability

rules by providing a model that allows for choice of care and activity levels by the

parties involved. Shavell’s framework provides conditions relevant for the individual

utility/ benefit functions and the accident loss function. It has served as a standard

model for much of the subsequent work in the field, including Shavell (1987), Endres

(1989), Miceli (1997, p. 29), Cooter and Ulen (2004, pp. 332-33), Dari-Mattiacci (2002),

Delhaye (2002), Goerke (2002), Parisi and Fon (2004), Singh (2006), Singh (2009), Parisi

and Singh (2010), Dari-Mattiacci, Lovat and Parisi (2014), Guerra (2015), Carbonara,

Guerra and Parisi (2016), Miceli (2017, Ch. 2) among others.1

For the most part, existing literature on the subject has focused on examining the

properties of equilibrium outcomes under the standard rules - the rules of strict liability,

no-liability, and the negligence liability-based rules; namely, the rule of simple negligence,

the rule of negligence with a defense of contributory negligence, the rule of negligence

with a defense of comparative negligence, and the rule of strict liability with a defense

of contributory negligence. In important contributions, Dari-Mattiacci, Lovat and Parisi

(2014) and Carbonara, Guerra and Parisi (2016) have extended the analysis beyond the

standard rules to examine the efficiency of rules that permit sharing of liability between

non-negligent parties.

Literature Re-examined. In this paper, we re-examine some of the existing claims

about the equilibrium outcomes under liability rules and their efficiency properties. As

to the existence of equilibria, the standard literature based on the standard model and

its generalizations has made the following claims.2

First, under the rule of negligence (with or without a defense of contributory negli-

gence), the injurer’s activity level will be excessive, i.e., greater than the socially optimum

level of his activity. However, the victim will make efficient choices, given the inefficient

activity choice by the injurer. Analogously, under the rule of strict liability with a de-

fense of contributory negligence, the victim’s activity level will be inefficiently high, but

the injurer’s choices will be efficient.

Second, equilibria exist under the negligence liability rules. This claim also follows

from the first claim - otherwise, it will be pointless to talk about the outcome under

1For works dealing with the doctrinal foundations of liability and models with constant activity levels,

see Polinsky (1980), Landes and Posner (1987), Miceli (1997), Hylton (2001), Jain and Singh (2002),

Schäfer and Frank (2009), Feldman and Singh (2009), Cooter and Ulen (2004), Bar-Gill and Ben-Shahar

(2003), Singh (2003, 2007). Also see, e.g., Emons (1990). For applications of the model in other contexts,

see Singh (2004 and 2009).
2See Shavell (1980), Shavell (1987), Endres (1989), Miceli (1997 p. 29), Cooter and Ulen (2004, pp.

332-33), Dari-Mattiacci (2002), Delhaye (2002), Goerke (2002), Parisi and Fon (2004), Singh (2006),

Parisi and Singh (2010). For a discussion, see Dari-Mattiacci, Lovat and Parisi (2014, page 572), Car-

bonara, Guerra and Parisi (2016), and Miceli (2017, Ch 2).



NO EQUILIBRIA UNDER NEGLIGENCE LIABILITY 3

liability rules. Some works have argued that the negligence criterion-based liability

rules induce equilibria in which the injurer and the victim opt for care levels that are

appropriate from the viewpoint of first-best efficiency.3

We re-examine these claims by using commonly used utility and accident loss functions

that satisfy all of the conditions in the standard model. We strictly follow all of the

procedures prescribed in the standard model, including the procedure for setting of due

care standards for both parties, etc. Yet, contrary to common belief, we show that

depending on the accident context and the liability rule used, a Nash equilibrium may

or may not exist. In other words, the existence of a Nash equilibrium under negligence-

based liability rules cannot be taken for granted. We show that even the rule of strict

liability and the rule of no-liability for the injurer fail to induce equilibrium under the

standard models.

As far as the efficiency analysis is concerned, liability rules can be compared with

one another by comparing the Nash equilibria induced by the rules under consideration.4

The above cited literature has focused on the efficiency properties of the negligence-based

liability rules, implicitly assuming that these rules are more efficient than the rules of

strict liability and the rule of no-liability. In contrast, we will show that for standard

negligence-based rules, it is not plausible to make a general claim about their efficiency

properties, since under these rules, the existence of an equilibrium itself cannot be taken

for granted. For the same reason, any claim about the relative efficiency of a negligence-

based liability rule vis-a-vis any other rule, including the rule of strict liability, can

be shaky. Moreover, we show that even in the context where a negligence-based rule

induces a Nash equilibrium, it may be dominated by the rule of strict liability or the

rule of no-liability.

To investigate the above issues further, we examine the nature of the individual payoff

functions and the social welfare function under the standard models. We show that the

standard models have inherent problems. For several commonly used specifications of

these models, the optimum choices may not exist even for individuals.

What is even more serious, the social welfare function in the standard model does

not possess the properties assumed in the literature. For many accident contexts and

commonly used utility functions that meet all of the standard conditions, the social

welfare function does not have a maximum, in which case the negligence standards would

not be defined, let alone a Nash equilibrium of the games induced by the negligence-

based rules. In many other cases fully compatible with the standard model, the first

best (the maximum of the social welfare function) may exist but may not be an interior

solution. A corner maximum is not a problem per-se. What is problematic is that the

analytical framework induced by the standard model is inherently prone to generating

corner maxima. Simply put, the standard models are not appropriate for risky situations

that require significant and comparable activity levels from both parties, such as motor

vehicle accidents.

3See Miceli (1997 p. 29), Cooter and Ulen (2004, pp. 332-33), and research papers Dari Mattiacci

(2002), Parisi and Fon (2004). Also see Delhaye (2002) and Miceli (2017, Ch 2). For an exhaustive

review of the literature on this and related issues, see Guerra (2015).
4In particular, rule A is more efficient than rule B if the Nash equilibrium under rule A implies a

higher social welfare level than the Nash equilibrium under rule B.
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The Related Literature. Two of the relatively recent works are especially relevant for

our study. These are the significant contribution by Dari-Mattiacci, Lovat, and Parisi

(2014) and a follow-up study by Carbonara, Guerra and Parisi (2016). These works

have shown that in some accident settings, the sharing of liability between non-negligent

parties does not dilute incentives for parties to take due care. Moreover, splitting of the

accident loss between non-negligent parties enhances the efficiency of negligence liability

rules under certain conditions. These results have been derived for particular accident

contexts where the activity choice of one party does not depend on the care choice by

the other party.

We show that in several accident settings under the standard model, the rule of strict

liability and/or the rule of no-liability can be more efficient than a liability sharing rule.

However, our findings do not contradict the ones in Dari-Mattiacci et al. (2014), as the

accident contexts studied are different.

Some other works have suggested that the efficiency of the rules of negligence can be

improved by raising the due care standard for injurers. See Goerke (2002) and Shavell

(2007).5 These works also implicitly assume that the negligence-based rules induce and

continue to induce a Nash equilibrium, even when the due care standard is changed. Our

analysis shows that for a negligence-based rule, the existence of an equilibrium can also

depend on the due care levels.

Section 2 summarizes the standard model used in existing literature including the

standard approach towards the social welfare maximizing care and activity levels for

the parties. Section 3 shows how the claims in the literature about the existence of

equilibrium under negligence liability rules do not hold. In Section 4, we explain the

nature of the underlying problems with the standard model. In Section 5, we discuss

the problems with the efficiency analysis of liability rules. In Section 6, we discuss the

conclusions and the shortcomings of our analysis.

2. The Standard Model and its extensions

2.1 Basics

Following the notations in Dari-Mattiacci, Lovat and Parisi (2014), there are two

people, U and V . They engage in activities that create a risk of an accident. Both

parties are private benefit maximizing and risk-neutral individuals. While U is the

potential injurer, V is the potential victim. That is, if an accident takes place, person U

will be the injurer and person V will be the victim. We will use the terms ‘the injurer’

and ‘party U ’ interchangeably. Similarly, for ‘the victim’ and ‘party V ’. The entire

accident costs fall initially on the victim, V . A court adjudicates any dispute between

U and V over the accident loss.

For example, U may be the driver of a large old truck in rough condition, and V may

be the driver of an expensive new BMW. They share the same roads. If they collide, all

damages will fall on V . Alternatively, U may be a soldier practicing shooting in a forest

area, and V may be a nearby stroller. If a bullet misses its target, all damages may fall

on V .

5For a discussion, see Singh (2006) and Dari-Mattiacci, Lovat, and Parisi (2014).
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Each person makes two choices: a level of ‘care’ and an ‘activity’ level. For instance,

in the old truck-new BMW example, each driver can vary his level of care (controlling

their speed, obeying traffic signals, remaining sober etc., all of which are translated into

a ’care’ level, measured in dollars). Parties can also vary their activity level. The activity

level might be miles driven, for instance.

Formally, care levels for U and V are x and y, respectively. These variables are

observable by U and V , and by the court. The activity levels for U and V are denoted

by s and t, respectively. These are not observable by the court. All four variables, s, x,

t and y, are non-negative. The care levels x and y are measured in dollars. Depending

on the nature of the activity, activity levels may be measured in some other unit, for

instance number of miles driven.

Let U(s, x) be the benefit (utility) function for the injurer. It depends on his activity

level s and his care level x. Benefit is measured in dollars. Similarly, the victim V has

a utility/benefit function V (t, y) that depends on his activity level t and his care level

y. This is also measured in dollars. Both benefit functions have the usual smoothness

properties and are public knowledge. Additional properties of these utility functions are

discussed in the next section.

The severity of an accident might depend on x and y, but the probability of an accident

might depend on s and t, as well as on x and y. Formally, the accident (prevention)

technology is captured by the function L(s, x, t, y). It denotes the expected value of

the accident loss. L(s, x, t, y) is decreasing and convex in x and y but increasing and

weakly convex in s and t. In general, L(s, x, t, y) will vary across accident contexts. For

instance, in the event of an accident, if the loss suffered by the victim is a constant, D,

and the probability of the accident is given by the function p(s, x, t, y) = s t
1+x+y , then

L(s, x, t, y) = p(.)D = s tD
1+x+y .

2.2 The Standard Model and its Extensions

In general, different accidents involve different combinations of injurers and victims.

While one accident may involve an old truck and a new BMW, another may involve a

car hitting a pedestrian, or a practicing shooter injuring, by mistake, a nearby stroller,

etc. A particular accident context can be characterized by specifying the identities of

the potential injurer and the victim involved, along with the properties of the accident

loss reduction technology. Formally, a particular accident context can be characterized

by the choice of specific payoff functions U(.) and V (.) for the injurer and the victim

respectively, along with the expected loss function L(.). The individual preferences

(utility/payoff functions) can vary across injurers and victims. Therefore, the exact

specification of payoff functions U(.) and V (.) will vary across accident contexts.

Moreover, the magnitude of loss in the event of an accident generally depends on the

context, e.g., the type of vehicles involved in the accident. It is also plausible that the

effectiveness of care may vary across injurers and victims - some people may be better

at exercising care than others. So, exact properties of L(.) can vary across accident

contexts.
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In any given accident situation, i.e., for any given combination of U(.), V (.) and L(.),

there is a Net Social Benefit or NSB. This is given by:

NSB(s, x, t, y) = U(s, x) + V (t, y) − L(s, x, t, y).

Since different accident contexts correspond to different choices (functional forms) of

the functions U(.), V (.) and L(.), and vice-versa, the NSB(.) function also varies across

accident contexts.

The accident models in Dari-Mattiacci, Lovat and Parisi (2014) and Carbonara,

Guerra and Parisi (2016) are among the most general accident models used in the liter-

ature. These models admit any accident context from the following class of functions:6

(2.1) G =


U(s, x) : Ux < 0, Uxx ≤ 0, Us > 0, and Uss < 0;

V (t, y) : Vy < 0, Vyy ≤ 0, Vt > 0, and Vtt < 0;

L(s, x, t, y) : Lx(.) < 0, Ly(.) < 0, Ls(.) > 0, Lss(.) ≥ 0,

Lt(.) > 0, Ltt(.) ≥ 0, and Lst(.) ≥ 0.

It is easy to produce many different functional forms for U(.), V (.) and L(.) satisfying

properties in (2.1). Indeed, the general class G admits infinitely many accident contexts,

represented by different combinations of functional forms for U(.), V (.) and L(.).

As to the standard model used in Shavell (1980 and 1987) and subsequent literature, the

expected loss is defined as L = s t l(x, y) and the parties’ utility functions are specified

as U = u(s) − x s and V = v(t) − y t with the interpretation that functions u(s) and

v(t) denote the gross benefits to U and V from their respective activities. The terms sx

and ty are interpreted as the cost of care for the injurer and the victim, respectively.7

In other words, the standard model puts some structure on the forms of functions U(.),

V (.) and L(.) that are considered.

In fact, there are two versions of the standard model. The first version admits the

following class of functions:8

(2.2) S1 =


U(s, x) = u(s)− x s : us > 0, and uss < 0

V (t, y) = v(t)− y t : vt > 0, and vtt < 0

L(s, x, t, y) = s t l(x, y) : lx(.) < 0, ly(.) < 0.

This version of the standard model takes the benefit function for the injurer, U , to

be a decreasing function of care level x. The gross benefit function for the injurer, u(.),

is assumed to be an increasing and strictly concave function of the activity level, s.

Similarly, V is assumed to be a decreasing function of care level y, but v(.) is taken as

an increasing and strictly concave function of t.

One can produce many different functional forms for u(.), v(.) and l(.), all consistent

with the properties of S1.9

6Carbonara et al. (2016) have considered relaxing the concavity assumption as well.
7For more on these specifications, see Dari-Mattiacci et al. (2014, page 575).
8See Parisi and Fon (2004), Shavell (2007 a and b), Parisi and Singh (2009), Dari-Mattiacci, Lovat,

and Parisi (2014), and Miceli (2017).
9Some of the commonly used utility functions belong to this class, e.g., u(s) = α

√
s, u(s) = αsk,

u(s) = log(m + s), and u(s) = α
√
s√

1+s
, where α > 0, k < 1 and m ≥ 1; v(t) = γ

√
t, v(t) = γtk,

v(t) = log(m+ t), and v(t) = α
√
t√

1+t
, where α > 0, k < 1 and m ≥ 1.
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Under the second version of the standard model, the gross marginal benefit to a party

from its activity is assumed to become negative beyond some threshold. Formally, u(.)

starts as an increasing function of s but eventually becomes a declining function beyond

some activity level. Likewise for v(.) and t. The second version admits the following

class of functions:10

(2.3)

S2 =


U(s, x) = u(s)− x s : uss < 0, us > 0 for s < ŝ and us < 0 for s > ŝ

V (t, y) = v(t)− y t : vtt < 0, vt > 0 for t < t̂ and vt < 0 for t > t̂

L(s, x, t, y) = s t l(x, y) : lx(.) < 0, ly(.) < 0.

where ŝ > 0, t̂ > 0.

Several leading utility functions fall in the class S2.11 In fact, S1 as well as S2 admit

infinitely many accident contexts - due to various possible forms of U(.) or V (.) or L(.),

all of which can be shown to satisfy all of the properties required by these classes.

Moreover, key properties of both versions of the standard model are:12

s = 0 ⇒ L(s, x, t, y) = 0

t = 0 ⇒ L(s, x, t, y) = 0(2.4)

Lst(.) > 0.

Informally put, the types of accidents covered by the standard model are the ones that

can happen only when activity levels are positive for both the parties. In addition, the

marginal effect of the activity of a party on the accident loss is strictly increasing in

the activity of the other party. In the context of bilateral-care and bilateral-activity

accidents, these are highly intuitive and plausible assumptions. It is common to assume

that for the classes S1, S2 and G, U(0, x) = 0 = V (0, y).

The standard model and all of its extensions define the social welfare maximization

problem as follows:

(2.5) max
s,x,t,y

{NSB(s, x, t, y) = U(s, x) + V (t, y)− L(s, x, t, y)}

It is standard to assume that for the functions U(.), V (.) and L(.) admissible under G, S1

and S2, the social welfare maximization problem (2.5) has a unique solution (see Shavell

(1980, 1987), Dari-Mattiacci et al. (2014, p 576) among others). The solution, denoted

(s∗, x∗, t∗, y∗), is assumed to be fully identifiable by solving the first-order conditions

(FOCs):

Us(s, x)− Ls(s, x, t, y) = 0(2.6)

Ux(s, x)− Lx(s, x, t, y) = 0(2.7)

Vt(t, y)− Lt(s, x, t, y) = 0(2.8)

Vy(t, y)− Ly(s, x, t, y) = 0(2.9)

10E.g., see Miceli (1997), Shavell (1980) and (1987) and Singh (2006).
11E.g., u(s) = s( δ−s), u(s) = α

√
s√

1+s
−δs, u(s) = α

√
s−δs, u(s) = αsk−δs, and u(s) = log(m+s)−δs,

where α, δ > 0, k < 1, m ≥ 1; v(t) = t(δ − t), v(t) = α
√
t√

1+t
− δt, v(t) = γ

√
t − δt, v(t) = γtk − δt, and

v(t) = log(m+ t)− δt, where α, δ > 0, k < 1, m ≥ 1.
12Note that under G, accident contexts with Lst(.) = 0 are also admissible.
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2.3 Liability: Negligence and No-fault

When an accident occurs, the victim V initially incurs the entire loss. Afterwards,

a court adjudicates the dispute between U and V . That is, the court determines what

part of the loss will fall on each of the two parties. Under the standard model, a court

determines the share of damages to fall on each of the two parties, contingent only on

the chosen care levels - because activity levels cannot be observed by courts or because

legal restrictions prohibit taking activity levels into account. Specifically, the literature

based on the standard model assumes that the court cannot observe s and t, but it can

observe x and y. Accordingly, the court determines the share of the injurer, λ, in the

accident loss as a function of x and y. The share of loss remaining with the victim is

1− λ(x, y).

Negligence Liability. Under negligence liability, depending on the rule, the court sets

due care standards either for the injurer or for the victim, or for both. Under the stan-

dard model, the court uses x∗ and y∗ as the due care standards for U and V , wherever

applicable; where x∗ and y∗ come from the profile (s∗, x∗, t∗, y∗), as defined above. Ac-

cordingly, a negligence liability-based rule determines the share of damages to fall on

each of the two parties, contingent on x and x∗, or on y and y∗, or contingent on both.

The leading negligence-based liability rules can be described as:

1. Simple negligence. This rule says λ = 1 (all the loss is placed on the injurer) if and

only if x < x∗ (the injurer is negligent). Otherwise, λ = 0 (all the loss stays with the

victim).

2. Negligence with a defense of contributory negligence. This rule says that λ = 1 if

and only if x < x∗ and y ≥ y∗ (the injurer is negligent and the victim is non-negligent).

Otherwise, λ = 0.

3. Strict liability with a defense of contributory negligence. This rule says λ = 1 if

and only if y ≥ y∗. Otherwise, λ = 0.

4. Comparative Negligence. This rule says λ = 1 if and only if x < x∗ and y ≥ y∗;

λ = 0 if and only if x ≥ x∗ (the injurer is non-negligent); and when x < x∗ and y < y∗

(both are negligent), the loss is split in proportion to their degrees of negligence.

Besides the above rules, we will consider the following negligence liability-based rules.

5. The 50/50 split liability when both are negligent. This rule says that λ = 1 if and

only if x < x∗ and y ≥ y∗; λ = 0 if and only if x ≥ x∗; and λ = 1/2 and 1−λ = 1/2 (the

loss is split 50/50) when x < x∗ and y < y∗ (both are negligent).

6. The 50/ 50 split liability when both are non-negligent. This rule says λ = 1 and if

and only if x < x∗; λ = 0 if and only if y < y∗ and x ≥ x∗ ; and λ = 1/2 (the loss is

split 50/ 50) when x ≥ x∗ and y ≥ y∗ (both are non-negligent).

For the negligence liability-based rules, the following axiom holds:
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Axiom (A1): Party U is considered negligent if and only if x < x∗, and similarly, party

V is negligent if and only if y < y∗.

Note that if a party is negligent it does not mean that it will necessarily be liable.

For example, under the simple negligence rule when y < y∗ and x < x∗ hold, only the

injurer is liable.

In addition to Axiom (A1), an important property of the above negligence-based lia-

bility rules is as follows: When an accident occurs, if a court finds that one of the parties

is negligent while the other is not, it places all of the damages on the negligent party.

We state this property as:

Axiom (A2): [x ≥ x∗ & y < y∗ ⇒ λ = 0] and [x < x∗ & y ≥ y∗ ⇒ λ = 1].

All of the liability rules considered in this paper are such that the liability shares of

the injurer, λ, and of the victim, 1−λ, always add up to one. While the liability rules 1-6

are all negligence liability-based rules, we will refer to rules 1-5 as the standard negligence

liability rules given their prevalence in the literature.

No-fault Liability. The next two liability rules are no-fault rules.

7. Strict liability for injurer. This rule says λ = 1 always, i.e., for any x, x∗, y, or y∗.

8. No liability for injurer. This rule says λ = 0 always, i.e., for any x, x∗, y, or y∗.

These definitions of the strict liability and no liability rules are standard in the literature.

The rule of strict liability is a no-fault liability rule since it holds an injurer in an accident

liable even when the injurer was not at fault (he is not negligent). Similarly, the rule of

no liability may hold the victim liable regardless of whether or not he is at fault. These

two rules do not satisfy Axiom (A2).

Note that under each of the above liability rules numbered 1-8, liabilities of the two

parties are coupled, in that the liability shares λ and 1− λ always add up to one.13

2.4 Individual Choices

Given that the shares of accident loss are determined by the court in view of the

liability rule in force, the injurer and the victim act accordingly. Formally, a liability

rule generates a normal form game with U and V as players. Each party wants to choose

an activity level and a care level to maximize his benefit function net of the expected

damages placed on him by the liability rule. Specifically, given t and y chosen by V , the

injurer wants to choose s and x to maximize:

U(s, x) − λ(x, y)L(s, x, t, y).

Similarly, given s and x chosen by U , the victim wants to choose t and y to maximize:

V (t, y) − (1− λ(x, y))L(s, x, t, y).

13In general, a liability mechanism can be called de-coupled if under its rules, the liability shares do

not always add up to one. For a comprehensive analysis of the de-coupled liability when activity levels

are constant, see Jain (2004). Also, see Kaur and Kundu (2020).
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A Nash equilibrium under a rule serves as a predicted outcome under the rule. Fol-

lowing the mainstream, we consider only pure strategy Nash equilibria while examining

equilibrium outcomes under liability rules.

Note that under a liability rule, the sum of the net benefit functions of the injurer and

the victim (in the general case) is equal to

U(s, x) + V (t, y) − L(s, x, t, y) = NSB(.).

3. Is there an Equilibrium Under Negligence Rules?

As discussed earlier, the literature claims that standard liability rules induce Nash

equilibria. In fact, the existence of an equilibrium is taken for granted with the standard

negligence-based rules as well as for the no-fault liability rules discussed above.

In this section we show that the claims about the existence of equilibria under liability

rules do not necessarily hold. We do so by providing several examples of accident contexts

that meet all of the conditions of standard models, yet none of the standard negligence-

based liability rules induces an equilibrium. We show that even the no-fault rules may

fail to induce an equilibrium under the standard model.

3.1. Standard Negligence. To start with, consider the following example correspond-

ing to version 1 of the standard model, i.e., class S1.

Example 1: Let U(s, x) = s1/2 − x s, V (t, y) = t1/2 − y t, accident loss D = 50 and

L(s, x, t, y) = 50 s t
1+x+y . So,

NSB(.) = s1/2 − x s + t1/2 − y t − 50 s t

1 + x+ y
. �

Consistent with version 2 of the standard model, i.e., class S2, we will work with the

following example.

Example 2: Let U(s, x) = s1/2 − 0.01 s− x s, V (t, y) = t1/2 − 0.01 t− y t, accident loss

D = 50 and L(s, x, t, y) = 50 s t
1+x+y . So,

NSB(.) = s1/2 − 0.01 s − x s + t1/2 − 0.01 t − y t − 50 s t

1 + x+ y
. �

For the accident context in Example 1, the first-order conditions for maximizing the

NSB(.), i.e., equations (2.6) - (2.9), lead to the following solution:

(s∗, x∗, t∗, y∗) = (0.0585468, 0.355473, 0.0585468, 0.355473).

Similarly, for the accident scenario in Example 2, the system of the first-order conditions

results in the following solution:

(s∗, x∗, t∗, y∗) = (0.0582945, 0.353629, 0.0582945, 0.353629).

For the ease of illustration, we have chosen symmetric payoff and loss functions. All nu-

merical computations in this paper are done using Mathematica. Figures are precise up

to the sixth decimal point. The Mathematica file with detailed calculations is available

on request.
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Next, we introduce some terms. Let s∗d denote the private benefit maximizing activity

level for the injurer when he simply opts for the due care level x∗, but does not bear any

part of the accident costs. Formally, s∗d solves

max
s
{U(s, x∗)}

Likewise, for the victim, let t∗d solve

max
t
{V (t, y∗)}

That is, the victim will choose t∗d as his activity level if he opts for the due care level

y∗ and gets full compensation for the accident costs.14

Now, we turn to the claims in the literature about the existence of Nash equilibria

under various liability rules. If the claims in the literature are correct, an application

of the standard model approach to the above examples should enable us to find an

equilibrium under negligence-based liability rules, since the chosen examples meet all

the conditions of the relevant versions of the standard model.

In the rest of this section, we investigate the existence of a Nash equilibrium. To this

end, we will strictly follow the standard procedure towards identification of the first best

and setting of due care standards for the parties. Yet, we will show that an equilibrium

does not exist under any of the standard negligence-based rules; neither does it exist

under the rule of strict liability with the defense of contributory negligence. In fact, the

rule of strict liability as well as the rule of no-liability for the injurer may also fail to

induce an equilibrium. Our first claim is about simple negligence.

Claim 1. Under the rule of simple negligence, a Nash equilibrium is not guaranteed.

Here is why the claim holds. Let’s start with Example 1. Consider a choice of care level,

say x, by party U . Recall, for the accident context outlined in example 1, x∗ = 0.355473.

The following cases arise.

Case 1: x > x∗. Obviously, under simple negligence, there cannot be a Nash equilib-

rium in which party U opts for x > x∗.

Case 2: x = x∗. Under the simple negligence rule, by choosing x∗, U ensures that all

damages fall on V. So he will solve for the payoff maximizing s to go along with x∗, i.e.

he will solve: maxs

{
U(s, x∗) = s1/2 − s x∗ = s1/2 − 0.355473 s

}
; it can easily be checked

that his payoff maximizing activity choice is s∗d = 1.978455. That is, in this case the

injurer will choose the pair (x∗ = 0.355473, s∗d = 1.978455). Given these choices by U ,

party V bears all of the accident loss. So, V will choose t and y that solves

max
t,y

{
t1/2 − y t− 50× 1.978455× t

1 + 0.355473 + y

}
.

Party V ’s best response, identified by the FOCs and second order conditions (SOCs),

is to choose t = 0.000727586 and y = 8.59052. In other words, for the choice of x∗ by

party U to be part of a Nash equilibrium, the following should hold: the choice of (x∗ =

0.355473, s∗d = 1.978455) by party U and choice of (y = 8.590, t = 0.000727586) by party

y should be mutually best responses. However, given that (y = 8.590, t = 0.000727586)

is chosen by V , (x∗ = 0.355473, s∗d = 1.978455) is not a best response for U because: At

14For various interpretations of ’full’ compensation, see Singh (2005, 2007).
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x∗ and s∗d = 1.978455, the payoff for U is 0.70329; in contrast, if he opts for x = 0 with s

= 17374.66, his payoff increases to 65.9065. This means that a Nash equilibrium cannot

have party U choosing x∗.

Case 3: x < x∗. Finally, consider the case, x < x∗. This would make U negligent

under simple negligence liability. So, all damages will fall on U , no matter what V does.

Therefore V will set his care level at y = 0, and will choose the largest t possible. This

means that the victim’s problem is to maximize V (t, 0) =
√
t, which has no solution.

That is, if U opts for x < x∗, a best response for the victim does not exist. Therefore, a

Nash equilibrium is not possible with the injurer opting for x < x∗.

Similarly, a Nash equilibrium is not possible under Example 2. Recall, in this case x∗

= 0.353629. Repeating the steps in Cases 1 and 2 above, it can easily be seen that there

cannot be any Nash equilibrium with x > x∗ or x = x∗ opted for by U . So, consider the

case of x < x∗. Now, U is fully liable. So V will set his care at the minimum level y = 0,

and will choose the activity level t = 2, 500 to maximize his payoff. Given these choices

by V , there is no best response for U in the region x < x∗. The choice of x∗ = 0.353629

and s = 1.890707 gives U a payoff of 0.68751; any other choice gives him strictly lower

payoffs.

Again, a Nash equilibrium is not possible if the injurer opts for x < x∗.

In other words, a Nash equilibrium cannot exist under the simple rule of negligence. �

Next, consider the rule of strict liability with a defense of contributory negligence.

This rule is the mirror image of that of simple negligence. Swapping the parties with

one another, in view of the symmetry in the functional forms, arguing along the lines in

the above claim, it can be seen that the following claim holds:

Claim 2. A Nash equilibrium is not guaranteed under the standard rule of strict liability

with a defense of contributory negligence.

Next, we have the following claim.

Claim 3. Under the rule of negligence with a defense of contributory negligence, a Nash

equilibrium is not guaranteed.

As under simple negligence, under this rule, party U has no liability as long as x ≥ x∗.
Moreover, as long as x ≥ x∗, payoffs and incentive structures are the same for both the

parties as under the rule of simple negligence, regardless of the choice of s by U and of t

and y by party V . So, it is easy to see that there cannot be a Nash equilibrium involving

a choice of x ≥ x∗ under the rule of negligence with a defense of contributory negligence.

Therefore, the only possibility of a Nash equilibrium is when the injurer opts for x < x∗.

Suppose there is a Nash equilibrium in which party U chooses some x < x∗. As to

the choice of y by party V , when x < x∗, a choice of y > y∗ is never a best response.

So, there are two possibilities for a Nash equilibrium: y < y∗ or y = y∗. In the former

case, i.e., when y < y∗, party V is liable under the rule of negligence with a defense of

contributory negligence, regardless of the choices made by party U . Therefore, under an

equilibrium in Example 2, U must maximize his gains by choosing care level x = 0, and

s = 2, 500. This is not good for party V . Specifically, given x = 0 and s = 2, 500 opted

for by U : a choice involving y < y∗ by party V gives him a payoff less than 0.000354049;
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party V is better off choosing y∗ and t = 1.890707 as it gives him a payoff of 0.68751.

Therefore, when x < x∗ and y < y∗, a Nash equilibrium is not possible.

Finally, consider the case where party U chooses some x < x∗ but party V opts for

y = y∗. But, this would mean that all damages will fall on U , as long as V keeps his

y = y∗. With y = y∗, the unique best choice for party V is to choose t∗d, as defined

above. In this context, t∗d = 1.890707. Given these choices by V , it can be seen that

party U is better off choosing x∗ = 0.353629 and s = 1.890707, thereby getting a payoff

of 0.22025, rather than any other choice involving x < x∗ that will give U less than

0.0138105. Again, a Nash equilibrium with x < x∗ is not possible.

Similarly, it can be seen that there is no Nash equilibrium with Example 1 either. �

In fact, arguing along the lines of the above claims, we can make the following claim

about the rule of 50/50 split liability when both parties are negligent.

Claim 4. A Nash equilibrium is not guaranteed under the rule of 50/50 split liability

when both parties are negligent.

This rule differs from the rule of simple negligence and the rule of negligence with

a defense of contributory negligence only in the sub-domain of x < x∗ and y < y∗.

Specifically, in view of the above proofs, it is straightforward to see that under the rule

of 50/50 split liability, there cannot be an equilibrium in which U opts for x ≥ x∗; or

when U opts for x < x∗ and V opts for y ≥ y∗. Therefore, we examine the existence of

a Nash equilibrium only in the region x < x∗ and y < y∗.

In this both-parties negligent region, for Example 1, the optimization problem for U

becomes: Given t, y, solve

max
s,x

{
s1/2 − x s− 50 s t

2(1 + x+ y)

}
.

The optimization problem for V is: Given s, x, solve

max
t,y

{
t1/2 − y t− 50 s t

2(1 + x+ y)

}
.

These optimization problems give us the following set of first-order conditions:

(1/2)s−1/2 − x− 25 t

1 + x+ y
= 0,

−s+
25 s t

(1 + x+ y)2
= 0,

and

(1/2)t−1/2 − y − 25 s

1 + x+ y
= 0,

−t+
25 s t

(1 + x+ y)2
= 0.

This system of FOCs has a unique solution: s = 0.086245 and x = 0.234187, t =

0.086245 and y = 0.234187. Moreover, in the region x < x∗ and y < y∗, the choice of

s = 0.086245 and x = 0.234187 by party U is a best response to the choice of t = 0.086245

and y = 0.234187 by party V , and vice-versa.15 At these symmetric choices, each party

15That is, the second order conditions hold.
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gets a payoff of 0.14948185. However, if U unilaterally deviates to x∗ = 0.355473 and

s∗d = 1.978455, it gives him a higher payoff, 0.70329. Hence, in the sub-domain of x < x∗

and y < y∗ there cannot exist a Nash equilibrium under this rule.

Similarly, it can be seen that for Example 2 also, there is no Nash equilibrium. �

Next, we turn to the rule of comparative negligence. In view of the above arguments,

it is obvious that under the comparative negligence rule, there cannot be an equilibrium

in which U opts for x ≥ x∗, or when U opts for x < x∗ but V chooses y ≥ y∗. So, the only

possible Nash equilibrium choices are x < x∗ by U and y < y∗ by V . In the both-parties

negligent region, there cannot exist a symmetric Nash equilibrium under the rule of

comparative negligence. To see, consider Example 2. In view of the arguments presented

for Claim 4, it is easy to see that the only candidate for a symmetric Nash equilibrium

is: s = 0.086245 and x = 0.234187 opted for by party U , and t = 0.086245 and y =

0.234187 chosen by party V . However, if U unilaterally deviates to x∗ = 0.353629 and

s = 1.890707, he gets a higher payoff. Similarly, under Example 2, there cannot exist

a symmetric Nash equilibrium under the standard rule of comparative negligence. Due

to the complexity of the calculations involved, we have not been able to rule out the

possibility of an asymmetric Nash equilibrium with both parties being negligent.

3.2. Beyond Standard Negligence. So far, we have considered the standard negligence-

based rules that do not allow for sharing of the accident loss between non-negligent par-

ties. For the accident contexts in above examples, all of these rules have failed to induce

an equilibrium, even though we have strictly followed the standard procedure prescribed

for identification of the first best, and for setting the due care standards for the parties.

The problem of non-existence goes beyond the above examples. It can easily be verified

that our claims of non-existence also hold for values of D different from D = 50 in the

expected loss function, L(.). Similarly, in Example 2, we have verified the non-existence

claims by replacing terms 0.01s and 0.01t with other similar changes in the benefit

functions U(.) and V (.). Such changes in the expected loss function and/or in the utility

functions amount to changing the accident contexts. In other words, our claims about

non-existence of equilibrium can be shown to hold for many different accident contexts

fully compatible with the standard model.

This shows that the prevalent claims about the equilibrium outcomes under standard

negligence-based liability rules do not hold, in general.

Indeed, the problem of the non-existence of equilibrium extends well beyond the above

examples and negligence-based standard liability rules. Consider the rule of strict liabil-

ity for injurer. Under this rule λ(x, y) = 1, regardless of the choice of x and y made by

the parties. Now take any accident context from class S1 or class G, discussed above.

Under the strict liability rule all damages fall on U , no matter what V does. Therefore

V will set his care level y = 0, and will choose the largest t possible. In other words, the

victim’s problem is to choose t so as to maximize V (t, 0). However, for utilities belonging

to classes S1 or G, marginal benefit from the activity is always positive, i.e., Vt > 0 al-

ways; which means the victim would like to increase his activity beyond any limit. That

is, a best response for the victim does not exist. Therefore, a Nash equilibrium cannot

exist under the rule of strict liability for the injurer. This logic applies to each and every

accident context in S1 and G.
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Similarly, it can be seen that for classes S1 and G, a Nash equilibrium cannot exist

under the rule of no-liability for the injurer.

To sum up, our results show that the problem of the non-existence of equilibrium is a

serious concern. Equilibrium cannot be taken for granted. To be clear, our results do not

imply that a Nash equilibrium can never exist under a liability rule. Depending on the

accident context and the liability rule in force, a Nash equilibrium may or may not exist.

To illustrate this, we turn to a rule that splits the accident loss between non-negligent

parties, i.e., liability rule number 6. Interestingly, this rule has a Nash equilibrium!

Claim 5. For accident contexts in Examples 1 and 2, there exists a Nash equilibrium

under the rule of 50/50 split liability when both parties are non-negligent.

Specifically, this liability rule works like this: U bears all the loss when he is negligent;

that is, when x < x∗. V bears all the loss when y < y∗ and x∗ ≤ x. When x∗ ≤ x and

y∗ ≤ y, the loss is split 50/50.

Consider Example 1. From the arguments in Claim 1 above, it can be seen that,

as under the rule of negligence, under this rule, there cannot be a Nash equilibrium

involving the choice of x < x∗ by party U , or a choice of x ≥ x∗ by party U and some

y < y∗ by party V . Therefore, let us consider the region x∗ ≤ x and y∗ ≤ y, with both

parties non-negligent. To see that a Nash equilibrium exists, suppose x∗ = 0.355473

and y∗ = 0.355473 are chosen by U and V respectively. At these care level choices, the

liability share of each party is 1/2. Therefore, the choices of s and t by the parties are

characterized by the following FOCs:

(1/2) s−1/2 − 0.355473− 25 t

1 + 0.355473 + 0.355473
= 0,

(1/2) t−1/2 − 0.355473− 25 s

1 + 0.355473 + 0.355473
= 0.

This system has a unique solution with s = t = 0.089838. Now, it can be seen that given

the choice of (t, y) = (0.089838, 0.355473) by V , the pair (s, x) = (0.089838, 0.355473) is

a unique best response for U identified by the first and second order conditions, and vice-

versa. That is, (0.089838, 0.355473, 0.089838, 0.355473) is a Nash equilibrium under the

rule of 50/50 split liability. Replicating the above steps, it can be seen that, for Example

2,

(0.089379, 0.353629, 0.089379, 0.353629) is a Nash equilibrium under the rule. �

This result also speaks to the issue of loss sharing between non-negligent parties.

Claim 5 shows that splitting of accident loss between non-negligent parties, rather than

diluting the incentives of the parties to take due care can actually strengthen them.16

4. Problems with the Standard Model

In this section we turn to some serious issues with the standard model and their

implications for the economic analysis of liability rules. We show that for a large set of

accident contexts, the social welfare function, NSB(.), either does not have a maximum,

or has a solution that can not be discovered using the first order conditions. In the next

16Dari-Mattiacci et al. (2014) also show that loss can be shared between non-negligent parties without

diluting the care incentives. Their results are derived for accident contexts different from ours.
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subsection, we will analyze several inherent problems with the standard care-activity

models.

4.1 The Missing Maxima

In this subsection, we will show that the existence of welfare maximizing care and

activity levels cannot be taken for granted in traditional precaution-activity models.

Specifically, we will show that for many accident contexts belonging to classes S1,S2

and G, the social welfare function, NSB(.), does not have a maximum at all or does not

have an interior maximum. Non-technical readers may want to skip the technical details

below.

To start with, consider the social benefit function NSB(.) = U(.) + V (.) − L(.)

generated by the benefits and accident loss functions admissible under the first version

of the standard model version. E.g., take any L(.) ∈ S1 and consider simple forms for

U(.) and V (.), as in the following class of functions:

(4.1) C1 =


U(s, x) = αsk − s x, α > 0 and 0 < k < 1;

V (t, y) = βtj − t y β > 0 and 0 < j < 1;

L(s, x, t, y) ∈ S1 .

Clearly C1 ⊂ S1. For this class, the social welfare as measured by NSB(.) becomes:

(4.2) NSB(.) = α sk − s x+ β tj − t y − s t l(x, y).

Even though the utility functions satisfy the Inada conditions with respect to activity

levels, this NSB(.) has no maximum. To see why, fix x = y = t = 0. Now NSB(.) =

α sk. It is unbounded in s and approaches ∞ as s → ∞. Alternatively, if we fix

x = y = s = 0 and let t→∞, the NSB(.) approaches ∞. The same logic applies if we

replace u(s) = α sk with u(s) = log (m+s), or replace v(t) = β tj with v(t) = log (m+ t)

where m ≥ 1. In fact, this logic applies to any NSB(.) based on the following class C2:

C2 = {U(.), V (.), L(.) ∈ S1 | U(.) or V (.) is unbounded}

Even if the Inada conditions are imposed on the utility and expected loss functions, the

NSB(.) cannot achieve a maximum as long as U(.) or V (.) is unbounded from above.

To see, hold t = 0. Now, U(.) and hence the NSB(.) can be increased beyond limits! In

other words, the objective of maximizing the NSB(.) cannot be achieved.

Mathematically speaking, the set of functional forms of U(.) that are increasing, con-

cave and unbounded above in s is infinite. Similarly, infinitely many forms of V (.) are

increasing, concave and unbounded in t. On this count itself, the classes C2, S1 and G

each contain infinitely many combinations of U(.), V (.), and L(.), for which the NSB(.)

cannot be maximized.17 So, we can conclude that for infinitely many accident contexts,

admissible under the standard model and the class G, there exists no maximum.

The problem of the non-existence of maxima for the above classes can be attributed

to the fact that utilities are unbounded above in s or t but bounded from below. Next,

consider the case where utilities are unbounded from below.

17Note that S1 and S2 are not subsets of G.
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First consider log utilities; U(.) = log s − s x and V (.) = log t − t y. For log utili-

ties, zero activity by either party cannot be the optimum. Using L(s, x, t, y) = 50s t
1+x+y ,

maximization of the NSB(.) will solve:

(4.3) max
s,x,t,y

{
log s − s x + log t − t y − 50 s t

1 + x+ y

}
.

The system of FOCs for this problem has a unique solution: (s, x, t, y) = (29 ,
7
6 ,

2
9 ,

7
6).

The value of the NSB at this point is −4.26741. The solution of the FOCs is nei-

ther a local maximum nor minimum.18 However, there are two social welfare maximiz-

ing profiles of care and activity levels, i.e., there are two global maxima identified by

the Numerical maximization using Mathematica. These are: the point (s, x, t, y) =

(1.927 × 108, 0, 3.698 × 10−6, 104250) and its mirror image (s, x, t, y) = (3.698 ×
10−6, 104250, 1.927 × 108, 0). That is, the social welfare is maximized at a corner

point. At each global maximum, the NSB is 5.885.

In the above and following examples, we deliberately work with symmetric utility

and accident loss functions; it is easier to produce a corner maximum when the payoff

functions are asymmetric.

Next, consider maximization of the following:

(4.4) max
s,x,t,y

{
log s − s x + log t − t y − 50 s t

1 +
√
x+
√
y

}
.

This also suffers from similar problems. The system of FOCs has a unique so-

lution: (s, x, t, y) = (0.211713, 0.627753, 0.211713, 0.627753). The value of the NSB

at this point is −4.23795. The solution fails to satisfy the SOCs. The Numerical

maximization using Mathematica gives two global maxima: the point (s, x, t, y) =

(7.615 × 10−10, 4.374 × 108, 3.664 × 1011, 0) and its mirror image (s, x, t, y) = (3.664 ×
1011, 0, 7.615×10−10, 4.374×108). At each point the NSB is 4.63. Again, the first best

solutions (the global maxima) remain corner points. Welfare maximization requires one

of the parties to take no care at all and the other to reduce activity level to almost zero.

While attempting to obtain an interior solution, it is difficult to think of functions

more suitable than the ones under (4.4). This combination of functions satisfies Inada

type conditions, i.e., it guarantees the following for each variable: at the zero level of a

variable, the marginal benefit from increasing it is infinite, and marginal gains approach

zero as the variable approaches infinity. Still, the first order conditions throw up a

solution which is neither a maximum nor minimum.

In the above NSB functions, the problem of non-existence of maxima or a corner max-

imum may be attributable to the fact that the utilities considered by us are unbounded.

So, let us consider some leading classes of bounded utilities. First, consider:

(4.5) C3 =


U(s, x) = s1/2 − δs− s x,
V (t, y) = t1/2 − δt− t y
L(s, x, t, y) = s tD

1+x+y ,

18The FOC solution fails to satisfy the SOCs. The Hessian is neither negative definite nor positive

definite. See file ‘Log utility combined’.
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where δ, D > 0. As Table 1 in the Appendix shows, for a large range of parameters δ and

D, the global maximum of the NSB function is a corner point, and hence unidentifiable

by the first order conditions. Changing the expected loss function also does not seem to

help.19

A few remarks about the tables in the Appendix are in order. One, each table presents

results for different NSB functions derived from the class mentioned at the top of the

table. Different NSBs arise corresponding to different combinations of δ and D in the

relevant class mentioned at the top of the table. Two, for each combination of δ and

D, i.e., for each NSB, we have listed only one of the two corner maxima (the first best

solutions). For every maximum listed in the tables, its mirror image is also a maximum.

For example, the 1st row of Table 1 (δ = 0.1 and D = 50 in C3) lists only one social

welfare maximizing point (s, x, t, y) = (24.96370, 0, 5.13773×10−5, 34.32330), though its

mirror image, i.e., (s, x, t, y) = (5.13773 × 10−5, 34.32330, 24.96370, 0) is also an NSB

maximizing point. Three, the figures in each cell are precise up to the 5th decimal point.

Next, consider another bounded class.

(4.6) C4 =


U(s, x) = s(δ − s)− s x,
V (t, y) = t(δ − t)− t y,
L(s, x, t, y) = s tD

1+x+y ,

where δ,D > 0. For a wide range of parametric values belonging to this class, the

solution to the NSB maximization problem is not interior. The solution from FOCs is

not even a local maximum or a local minimum. See Table 2. Consider yet another class

of bounded utilities:

(4.7) C5 =


U(s, x) =

√
s√

1+s
− δ s− s x,

V (t, y) =
√
t√

1+t
− δ t− t y

L(s, x, t, y) = s tD
1+x+y ,

δ, D > 0. For every accident context in class C5, the NSB function is bounded above

by 2. Yet, for many combinations of δ and D, the first best is a corner point, and hence

cannot be identified by the FOCs. See Table 3.

In the interest of brevity, tables below present results for a select combination of

parameters. However, using the Mathematica code (available on request), it can easily

be seen that the results hold for a really large range of parameters. Actually, we have

not been able to find functional forms that are compatible with the standard models and

deliver an interior maximum.

Summing up, analysis of this sub-section shows that even for leading utility functions

used in economics, either a first best solution does not exist or there is no interior first

best solution. Specifically, for many accidents in classes S1 and G, the social welfare

function NSB does not have a maximum. Further, we have shown that for many other

accidents in C3−C5 and hence in S2, a global maximum is corner. It requires very high

activity level from one of the parties and essentially zero activity by the other party. The

choice of zero activity level by one of the parties has the great social benefit of reducing

19Even if we change the expected loss function to s tD
1+
√
x+
√
y

or to s tD
1+sx+sy

, the NSB(.) continues to

attain maximum at a corner point.
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the accident loss to zero. Moreover, it reduces the cost of care for the party to almost

zero.

4.2 The Inherent Problem

In this subsection, we discuss several ‘problems’ with the standard model and its

generalizations. First of all, under commonly used specifications of the standard model,

the individual optimization problems do not have a solution even under the rule of strict

liability and the rule of no-liability. Consider any accident context from class S1 and/or

class G. Suppose the rule in force is of no-liability for the injurer. Under this rule, the

injurer is not liable regardless of his choice of care and activity levels. So, he will choose

zero care and would want to choose his activity level to maximize his private benefit.

Formally, his optimization problem for activity is

(4.8) max
s
{U(s, 0)}

But, for classes S1 and G, Us > 0 always. This means that there is no utility max-

imizing choice for the injurer. Similarly, under the rule of strict liability, the victim’s

maximization problem

(4.9) max
t
{V (t, 0)}

has no solution under classes S1 and G, as Vt > 0 always.

Moreover, the NSB(.), i.e., the social welfare function induced by the common spec-

ifications of the standard model does not possess properties assumed in the literature.

Under commonly used specifications of the model, such as classes C1 and C2 discussed

above, the social welfare function has no maximum value. Notably, these classes of acci-

dents meet all the conditions of the model, yet the social welfare function does not have

a maximum. As discussed in the last section, this problem arises for infinitely many

accident contexts from classes S1 and G. In the absence of a maximum for the social

welfare function, the negligence standards would not be defined, what to speak of a Nash

equilibrium under the negligence rule that might be in place.

These problems arise because of unrealistic properties of classes S1 and G. Simply

put, commonly used specifications of S1 and G imply the following: if a party does not

have to take care, its activity is not self-limiting. In other words, if not required to take

care, a driver will keep on driving, a pedestrian will keep on walking!

These are implausible and unrealistic assumptions. At a bare minimum the individual

payoff functions U(.) and V (.) should be such that the activity levels are self-limiting.

However it is not enough to have self-limiting benefit functions. As is shown above,

even for several commonly used self-limiting utility functions (e.g., as in the case of

accident classes C3−C5) the first best (which maximizes NSB) is not an interior point.

Consequently, the standard approach of using the first order conditions to identify the

first best care levels is misleading in many accident contexts.

The following key feature of the standard models seems to be a source of this problem:

L(.) = 0 if s = 0 or t = 0; see the expression (2.4).

On the face of it, an intuitive and plausible assumption. However, it makes the model

vulnerable to corner global maxima. If one party, say the victim, keeps his activity at
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zero, it has two direct and significant social benefits. First, the expected accident loss

is reduced to zero, even if the injurer opts for a very high level of activity and does not

exercise care at all. Second, the cost of care for the victim is also reduced to zero, even

when he chooses very high care. This second benefit arises from the specification of the

cost of care in the standard model: t y for the victim and s x for the injurer. So t = 0

implies ty = 0, even if the care level y is very very large.

Our analysis presented above shows that for a large set of accident contexts, these two

gains dominate the opportunity cost, i.e, the forgone utility to the victim, which is kept

almost at 0.20

Therefore, the standard models are vulnerable to corner global maxima. This problem

does not go away even with some other specifications of the cost of care, i.e., instead of

specifying s x as cost of care for the injurer and t y for the victim, we let these costs be

simply x and y, respectively. We have also worked with the following cost functions:

s x+u for the injurer and t y+u for the victim.21 We have also tried other specifications

of the expected loss functions, such as L(.) = D s t
(1+x+y+u+v) or L(.) = D s t

(1+sx+ty+u+v) but

the social welfare functions continue to give corner solutions.

The corner maxima are not a problem per-se. What is problematic is that the ana-

lytical framework produced by the standard model is inherently prone to generating too

many corner maxima. In other words, the standard models do not provide a satisfactory

framework for analyzing accident contexts where the socially optimum activity levels are

significantly greater than zero for both parties, e.g., road accidents.

5. Problems with the efficiency analysis

The focus of the existing literature is on the efficiency properties of the negligence-

based liability rules. With the exception of Dari-Mattiacci, Lovat, and Parisi (2014), this

literature is based on an implicit, at times explicit, assumption that the negligence-based

rules induce an equilibrium. Moreover, the literature seems to assume that the negligence

rules are more efficient than the no-fault rules. However, as we have shown in Section

3.1, one cannot be sure of the existence of an equilibrium under any of the standard

negligence-based rules. In the absence of a Nash equilibrium, it is not plausible to make

any claim about the efficiency of a rule per-se or vis-a-vis other rules. Specifically,

a negligence-based liability rule cannot be assumed to be more or less efficient than

any other rule, including the rule of strict liability, without precise specification of the

accident context and ensuring the existence of equilibria under each of the rules being

compared.

This holds true for the no-fault liability rules as well. As is shown in Section 3.2, for

a large class of accident contexts in class S1 and/or class G, a no-fault liability rule may

not have a Nash equilibrium. Therefore, it is not plausible to make general claims about

the efficiency of a liability rule per-se or relative to another rule.

20This logic applies to positive but arbitrarily small levels of t, e.g., in case of log utilities as in (4.3)

and (4.4) above.
21In this specification, the cost of care has two components. s x can be thought of as injurer’s cost

of care that increases with activity level, e.g., keeping awake while at the wheel. u, on the other hand,

can be interpreted as the care that does not vary with activity, e.g., the cost of an annual regulatory

check-up of vehicle.
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Moreover, by concentrating on presumed inner solutions from first order conditions,

the literature has aggravated the problems of efficiency analysis. Even when the net

social benefit function has a maximum, the individual optimization problems are well

defined, and each of the liability rules under consideration induces a Nash equilibrium,

a rule of no-fault liability can be more efficient than a liability sharing negligence-based

rule.

To show this we introduce two terms. Let s∗0 denote the private benefit maximizing

activity level for the injurer when he takes no care at all and yet does not bear any of

the accident costs. Formally, s∗0 solves

(5.1) max
s
{U(s, 0)}.

Likewise, let t∗0 denote the benefit maximizing activity level for the victim when he takes

no care at all and yet is fully compensated for the accident costs. Mathematically, t∗0
solves

(5.2) max
t
{V (t, 0)}.

In view of the above, under class S1 and/or class G, neither s∗0 nor t∗0 exist. However,

these are well defined for accidents in S2. So, we work with an example from this class.

When s∗0 exists, it is obvious that under the rule of no-liability for the injurer, U will

choose zero care along with s∗0 as the activity. Similarly, when t∗0 exists, under the rule

of strict liability, V will choose zero care along with t∗0 as the activity.

Now, let us consider the accident context of Example 2. Note that the net social

benefit function for this context arises as a special case of functions in C3 if we take

δ = 0.01 and D = 50. As can be seen from Row 2 of Table 1, there are two corner

global maxima for this NSB(.): (s, x, t, y) = (2499.96, 0, 0, 352.551), and (s, x, t, y) =

(0, 352.551, 2499.96, 0). At these points, the NSB(.) = 25.0004. Note that the first

maximum requires very high activity and zero care from the injurer, along with extremely

low activity but very high care from the victim, and vice-versa for the second solution.

The first global maximum is achieved as a Nash equilibrium under the rule of no

liability for the injurer. Here is why. Since V bears the damages, U sets x = 0, yet he is

not liable for accident loss. So, to maximize his benefit, he chooses s = s∗0. In this case,

s∗0 = 2, 500. Now, given x = 0 and s = 2, 500 chosen by U , the best response for V is

to choose y = 352.5534 and an extremely low level of activity at t = 0.22 That is, under

no liability for the injurer, the Nash equilibrium is: (s, x, t, y) = (2500, 0, 0, 352.5534),

resulting in NSB = 25.0004 which approximates the first of the global maxima.

By symmetry, under the rule of strict liability for the injurer, the equilibrium will

be at (s, x, t, y) = (0, 352.5534, 2500, 0); and the value of the NSB at this equilibrium

will again be 25.0004. In other words, the equilibrium under the rule of strict liability

approximates the second of the global maxima.

Now consider the liability sharing rule 6, i.e., the rule of 50/50 split liability when

both the parties are non-negligent. From Section 3, we know that under this rule, the

profile

(0.089379, 0.353629, 0.089379, 0.353629) is a Nash equilibrium for the accident context

in Example 2. But at this Nash equilibrium point, the value of the NSB = 0.29973,

22These y and t are a unique solution to V ’s problem: maxt,y{t1/2 − 0.01 t − y t− 50×2,500 t
1+y

}.
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which is much less than 25.0004, the value of the NSB at the equilibrium under the

rule of no liability as well as the rule of strict liability! Therefore, in some contexts, a

no-fault liability rule can dominate a liability-sharing negligence rule. Therefore, even

in those contexts where equilibria exist, focus on the negligence-based rules over the

no-fault rules is not justified.

Next consider the claim of increasing the social welfare under a negligence-based rule

by raising the due care level. This strand of literature also implicitly assumes that the

negligence-based rules induce and continue to induce a Nash equilibrium, even when

the due care standards are changed.23 This assumption is also misplaced. Our analysis

shows that for a negligence-based rule, the existence of an equilibrium can also depend

on the due care levels. For instance, in the context of Example 2, if the due care level

for the injurer is set at zero, then the rule of negligence induces an equilibrium - in

that case, the simple negligence rules becomes the rule of no-liability for injurer (a rule

that induces an equilibrium, as shown above). However, if the due care level is set at

x∗ = 0.353629, from Claim 1 above, we know that there cannot exist a Nash equilibrium

under the simple negligence rule.

6. Conclusions and Limitations

The standard model of accidents introduced in Shavell (1980 and 1987) has been

used in much of the subsequent literature on economic analysis of liability rules. This

commonly used model specifies conditions on the individual benefit functions and also

the accident loss functions. In addition, it prescribes how the due care levels should be

chosen under a liability rule. In this paper, we have applied the standard model to several

large classes of individual utility functions and loss functions, including the functions

commonly used in economics. All functions used by us satisfy all of the conditions of the

standard model. Moreover, we have followed the approach towards identification of due

care levels and Nash equilibria, exactly as prescribed in the standard model. However,

our findings are very different from the claims in the existing literature.

Contrary to the mainstream claims, we have shown that the existence of an equilibrium

under a liability rule is not guaranteed; depending on the accident context and the rule

in force, a Nash equilibrium may or may not exist. This is as much true of negligence-

based rules as for the no-fault rules, such as the rule of strict liability and the rule of no

liability for the injurer.

This finding has implications for the efficiency analysis of liability rules that has pri-

marily focused on negligence-based liability rules. A strand of these works has attempted

to examine the effect of changing due care levels on the efficiency of the rule. However,

when the existence of a Nash equilibrium itself cannot be taken for granted, it is not

plausible to make general claims about the efficiency of a rule per-se or vis-a-vis the

other liability rules. Specifically, a negligence-based liability rule cannot be considered

more or less efficient than the rule of strict liability without precise specification of the

accident context and ensuring the existence of equilibria under each of the rules being

compared. Moreover, we have shown that even if a Nash equilibrium exists under a

23See Goerke (2002) and Shavell (2007). For a discussion, see Singh (2006) and Dari-Mattiacci, Lovat,

and Parisi (2014).
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negligence-based liability rule, it may be less efficient than a no-fault liability rule. In

other words, we have shown that in many accident contexts, the second best rule may

be either the rule of strict liability or the rule of no-liability for the injurer.

These implications of the standard model do not gel with the prevalence of negligence

liability rules in the real world, suggesting that either the efficiency does not play an

important role in the choice of liability rules or the standard model needs to be revised.

We have shown that the standard model is inherently vulnerable to several problems.

For several large classes of functions fully consistent with the standard model, a global

maximum does not exist for the net social welfare function; even individual choices are

not well defined. For many other commonly used specifications of benefit functions, the

solution to the social welfare maximization problem is a corner point - it requires very

high activity with zero care from one of the parties, along with almost zero activity with

very high care from the other party. This is a problem because even with commonly

used utility functions, the standard model does not induce accident contexts where social

efficiency requires strictly positive care and activity levels from both the parties - for

example, road accidents. Our analysis identifies the key features of the standard model

that make it vulnerable to corner solutions.

Our results do have several limitations. We do not answer an important question:

what properties of utility and accident loss functions can guarantee an interior maxi-

mum? Addressing this question is important for the use of the first order conditions

as a guide for identifying the first best and also for explaining the prevalence of the

negligence-based rules. However, our analysis offers some insights on these concerns. We

hope our findings will be a useful guide for future research on the above issues.
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Tables 1-3

Appendix (Tables)

Table 1: Based on class C3

Function
parameters

FOC
solution

NSB(.) at
FOC solution

First Best
solution

NSB(.) at
First Best

δ = 0.1
D = 50

0.05607
0.33719
0.05607
0.33719

0.33068

24.96370
0

5.13773×10−5

34.32330

2.50358

δ = 0.01
D = 50

0.05829
0.35363
0.05829
0.35363

0.34097

2499.96
0

5.0141×10−7

352.551

25.0004

δ = 0.001
D = 50

0.05852
0.35529
0.05852
0.35529

0.34202

2.50000×105

0
5.00141×10−9

3.53453×103

2.50000×102

δ = 0.00001
D = 50

0.05855
0.35547
0.05855
0.35547

0.34213

2.5×109

0
5.00002×10−13

3.53553×105

2.50000×104

δ = 0.1
D = 5000

0.00498
1.99504
0.00498
1.99504

0.09542

24.99650
0

5.01346×10−7

3.52528×102

2.50035

δ = 0.001
D = 5000

0.00505
2.01205
0.00505
2.01205

0.09641

2.50000×105

0
5.00014×10−11

3.53543×105

2.50000×102

δ = 0.00001
D = 5000

0.00505
2.01222
0.00505
2.01222

0.09642

2.49994×109

0
9.07487×10−15

3.54363×106

2.50000×104

Columns 2 and 4 give solutions to the maximization problem in the order
s ,x , t ,y from top to bottom.
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Table 2: Based on class C4

Function
parameters

FOC
solution

NSB(.) at
FOC solution

First Best
solution

NSB(.) at
First Best

δ = 2
D = 50

0.05111
0.29926
0.05111
0.29926

0.08691

1.00003
0
0
0

1.0

δ = 5
D = 50

0.22643
1.18238
0.22643
1.18238

0.86443

2.50008
0
0
0

6.25

δ = 8
D = 50

0.50000
2.00000
0.50000
2.00000

3.00000

4.00003
0
0
0

16.0

δ = 10
D = 500

0.09450
2.93700
0.09450
2.93700

0.66748

5.00004
0
0
0

25.0

δ = 15
D = 500

0.20254
4.53164
0.20254
4.53164

2.12025

7.50006
0
0
0

56.25

δ = 20
D = 500

0.34858
6.10095
0.34858
6.10095

4.84493

10.0001
0
0
0

100.0

Columns 2 and 4 give solutions to the maximization problem
in the order s ,x , t ,y from top to bottom.
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Table 3: Based on class C5

Function
parameters

FOC
solution

NSB(.) at
FOC solution

First Best
solution

NSB(.) at
First Best

δ = 1
D = 50

0.03579
0.16894
0.03579
0.16894

0.24023

0.12276
0

0.00989
1.47753

0.25786

δ = 2
D = 50

0.02373
0.04459
0.02373
0.04459

0.18161

0.02749
0

0.02099
0.17242

0.18176

δ = 1
D = 100

0.02661
0.31561
0.02661
0.31561

0.20857

0.13526
0

0.00456
2.67777

0.24375

δ = 2
D = 100

0.01873
0.18432
0.01873
0.18432

0.16373

0.03308
0

0.01124
0.81889

0.16609

δ = 1
D = 500

0.01293
0.77121
0.01293
0.77121

0.14728

0.14974
0

0.00083
7.65261

0.22558

δ = 5
D = 500

0.00516
0.30292
0.00516
0.30292

0.08028

0.00637
0

0.00431
0.78401

0.08060

Columns 2 and 4 give solutions to the maximization problem
in the order s ,x , t ,y from top to bottom.
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