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Abstract

We study a continuous-time R&D race between an established �rm and a
startup under asymmetric information. R&D investment brings success sto-
chastically but only if the innovation is feasible. The only asymmetry between
the �rms is that the established �rm has better information about the feasibility
of the innovation. We show that there is an equilibrium in which the poorly-
informed startup wins more often, and has higher expected pro�ts, than the
better-informed incumbent. When the informational asymmetry is large, this
is the unique equilibrium outcome. The channel by which better information
becomes a competitive disadvantage appears to be new� it does not stem from
a negative value of information or from a second-mover advantage. Rather, it
stems from the fact that better information dulls the incentive to learn from
one�s rival.
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1 Introduction

Why Tesla and not GM or Toyota? Why Amazon and not Sears or Wal-Mart?
Why are startups the source of so many innovations instead of, and at the expense
of, established �rms? In his history of the hard-disk industry over two decades,
Christiansen (1997) found that the market for each new generation of disk drives�
typically, smaller in size� was dominated by a di¤erent set of �rms. Of the 17 �rms
in the industry in 1976, only IBM�s disk-drive division survived until 1995. In the
same period, there were 129 entrants but 109 of these failed to make the transition to
later generations (Christiansen, 1997, p. 22). Many technological innovations came
from startups.
What advantage does a startup have over an established �rm? In one of his many

classics, Arrow (1962) argued that because of the "monopolist�s disincentive created
by his preinvention pro�ts" (p. 622) an entrant would have more to gain from an
innovation. This is sometimes called the "replacement e¤ect" because by successfully
innovating, the monopolist would only be replacing himself while the entrant would
be replacing the monopolist. Running counter to Arrow�s reasoning are the strong
incentives that an incumbent has to protect its monopoly position. This stems from
the Econ 101m > 2d inequality� monopoly pro�ts exceed total pro�ts in a duopoly�
which can be cleverly rearranged as m�d > d. In this form, it says that the incentive
of the incumbent to preserve its monopoly is greater than the incentive of the startup
to enter as a duopolist (Gilbert and Newbery, 1982). This "preemption e¤ect" is at
odds with the replacement e¤ect. There are other forces that may favor incumbents
as well� it may be better at R&D or have deeper pockets. Whether the balance of
all these forces favors incumbents or startups is then an empirical question. In a
recent paper, Igami (2017) went back to the disk-drive industry and constructed a
structural model to try to answer this question. A large fraction of �rms failed to
make the transition from 5:25- to 3:5-inch drives. Igami found evidence that Arrow�s
replacement e¤ect played a substantial role, explaining about 60% of the turnover.1

In this paper, we identify an entirely new e¤ect that, like the replacement e¤ect,
works to the detriment of the established �rm. We suppose that the established �rm
has better information about the feasibility of an R&D project than a startup/entrant.
We will show that better information is a competitive disadvantage and as a result,
the less-informed entrant succeeds more often and has a higher payo¤than the better-
informed incumbent.
The following simple example illustrates how better information can be a com-

petitive disadvantage.2 Two �rms compete in an R&D race with a random return

1Echoing Arrow to some extent, there is empirical work showing that large, established �rms tend
to engage in R&D which is incremental� aimed at improving the quality of their existing products.
The R&D activity of smaller �rms tends to be radical� aimed at new products. This �nding goes
back to the 1980s and the recent work of Akcigit and Kerr (2018) con�rms this.

2We are grateful to a referee for generously providing this example.
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M that is equally likely to be 0 or 1: There are two periods and R&D costs c per
period. In the �rst period, a �rm decides whether or not to enter the race by investing
and, if it does, in the second period, decides whether or not to invest again. In each
period, �rms move simultaneously but �rst-period decisions are observed prior to the
second period. If one �rm stays longer than the other, it gets M and the other 0: If
both stay until the end, each gets 1

2
M: Otherwise, both get 0: The only asymmetry

between the �rms is that �rm 1 receives a noisy signal about M: Speci�cally, prior
to any decision, it gets either good news, g, or bad news, b. The probability that the
signal is g when M = 1 is q; where 2

3
< q < 1, and the probability that the signal is b

when M = 0 is also q: Firm 2 is completely uninformed. Conditional on the signals,
the expected returns are E [M j g] = q and the E [M j b] = 1� q: Good news makes
�rm 1 optimistic while bad news makes it pessimistic. Suppose that the parameters
satisfy (i) 1

2
� 1

4
q > 2c; (ii) 2c > 1� q > c.

The unique equilibrium of this game is: an optimistic �rm 1 invests in the �rst
period and invests in the second period only if it sees that �rm 2 also invested. A
pessimistic �rm 1 stays out of the race. Firm 2 invests in the �rst period and invests
in second period only if it sees that �rm 1 also invested.
To see that this is an equilibrium, notice that if �rm 2 sees that 1 invested in the

�rst period, it knows that 1 is optimistic and so it is optimal for 2 to invest in the
second period as well. This is because q > 2

3
implies 1

2
q > 1 � q > c: Moreover, it

is optimal for �rm 2 to invest in the �rst period. This is because if 1 is pessimistic
then 2�s payo¤ from investing is 1� q � c > 0 by (ii); and if 1 is optimistic, then 2�s
payo¤ is 1

2
q� 2c > 0 which follows from (i) when q > 2

3
: Now, given �rm 2�s strategy,

a pessimistic �rm 1 does not want to enter. This is because if 1 enters, then it knows
that �rm 2 will invest in the second period as well and thus �rm 1 will make a loss
because 2c > 1 � q; again by (ii). On the other hand, �rm 1 with signal g wants to
enter the race again because 1

2
q � 2c > 0:

In equilibrium, when 1 is optimistic both �rms get a payo¤ of 1
2
q� 2c > 0. When

1 is pessimistic, �rm 1 does not enter the race and gets 0 whereas �rm 2 enters and
gets 1� q� c > 0: Thus, the uninformed �rm�s overall expected payo¤ is higher than
that of the informed �rm.
The key here is that the uninformed �rm 2 enters the race because by doing so,

it can learn �rm 1�s information from the latter�s actions. To see that learning is
crucial, consider a variant of the example in which �rms��rst-period decisions are
not observable. Now there is no possibility of learning and in the unique equilibrium,
�rm 1 enters and stays when it is optimistic and does not enter when pessimistic.
Because (i) is the same as 1

4
q+ 1

2
(1� q) > 2c, �rm 2 enters and stays for two periods

because it does not know whether 1 is optimistic or pessimistic. Now the informed
�rm�s expected payo¤ is higher than that of the uninformed �rm.
While the example illustrates some of the ideas in this paper, it misses some

important aspects of R&D races� that the overall chance of success is greater the
longer one stays in the race, that �rms may learn from lack of success, that �rm 2
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may also have some information, etc. Moreover, the result relies on some restrictions
on the parameters.
In what follows, we study a standard continuous-time, winner-take-all R&D race.

Firms must invest to engage in R&D on a project whose feasibility is unclear. Pre-
cisely, there are two states of nature. In one, the innovation is feasible and R&D
brings success stochastically� in the manner of exponential bandits. In the other
state, the innovation is infeasible. Firms do not know the state but both receive in-
formative private signals about it and so each can learn from the other. The only
di¤erence between the �rms is that the established �rm�s signal is more accurate
than that of the startup. As the race proceeds, lack of success causes both �rms to
become increasingly pessimistic about the feasibility of the innovation. Each must
then decide when to quit, a decision that is observed by its rival3 and is irrevoca-
ble4. Such models are rather standard� the basic structure originates in Choi (1991)
and has been studied by others� and the only new ingredient we add is comparable
asymmetric information.
To isolate this new e¤ect, we assume that the �rms are alike in all other respects�

the costs and bene�ts of R&D as well as their R&D abilities are the same. Because the
gains from R&D are the same, the replacement and preemption e¤ects are absent.5

Our main result is6

Theorem 1 There is an equilibrium of the R&D game in which the less-informed
startup wins more often, and has a higher payo¤, than the better-informed incumbent.
Moreover, if the quality of the incumbent�s information is much better than that of
the startup, then this is the only equilibrium.

Our result shows that in an otherwise symmetric situation, the incumbent�s infor-
mational advantage becomes a competitive disadvantage� it wins the R&D race less
often than the startup and has a lower payo¤ as well. The startup is favored to win
precisely because it is less informed!
We call this an "upstart equilibrium." In such an equilibrium, the less-informed

startup is, quite naturally, willing to learn from the incumbent. But because of its
superior information, the incumbent is unwilling to learn from the startup/upstart.
The learning is so unbalanced that the startup gains an advantage over the incumbent.

3Pharmaceutical companies must register drug trials with the Food and Drug Administration
and report progress or lack thereof publicly (see Krieger, 2019 for details of the reporting process).
In other industries, R&D activity must be reported to investors.

4We base this on the assumption that once a project is abandoned, it is prohibitively costly to
restart it. This seems closer to reality than assuming that �rms can shut down R&D and then
costlessly restart it.

5The equilibrium studied here is robust and introducing small asymmetries in payo¤s, R&D costs
or abilities would not overturn the results.

6Theorem 1 summarizes the �ndings of Propositions 1 and 2 below. Proposition 3 identi�es when
the payo¤ ranking is strict.
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The incumbent su¤ers from a "curse of knowledge"� its superior knowledge hinders
learning.
Precisely, both the incumbent and the startup play strategies that reveal over

time whether or not they are optimistic. But since the incumbent�s information is
of higher quality than that of the startup, when pessimistic it exits early in the race
based solely on its own information. The reason is that while the startup also reveals
its signal during the play of the game, this comes too late to make it worthwhile for a
pessimistic incumbent to stay and learn. On the other hand, the information does not
come too late for the optimistic incumbent for whom it is worthwhile to stay and learn
the startup�s signal. Thus a pessimistic incumbent exits early while an optimistic one
stays. This means that the startup can learn the incumbent�s information at low cost.
During the play of the game, both the optimistic and the pessimistic startup learn
the incumbent�s information but only the optimistic incumbent learns the startup�s
information.
It is then not too hard to argue that if both �rms are optimistic or both are

pessimistic, they exit at the same time.7 The same is true when the incumbent is
optimistic and the startup pessimistic� this is because they both learn each other�s
signal. The remaining case is one with a pessimistic incumbent and an optimistic
startup. The incumbent exits early and so the startup learns that it is pessimistic.
But its own optimism causes the startup to continue with R&D nevertheless. Now
the startup has a greater chance of winning than does the incumbent.
The primary mechanism that drives our result is that �rms revise their expecta-

tions of success from the exit decisions of their rivals. Is this true? In an interesting
recent paper, Krieger (2019) uses data on over 10,000 drug-development projects that
reached the stage of human trials (what is called phase II) to address this very ques-
tion. The industry is particularly apt because regulations require that the results of
drug trials be disclosed and so �rms are well aware of others�R&D activity. Krieger
�nds that news about a competitor�s failure indeed leads to a signi�cant increase in
the quitting rate of �rms. In one instance, a �rm announced that it was ending its
development e¤ort of a cancer drug and explicitly gave as its reason that a competitor
had abandoned a similar project! Moreover, Krieger �nds that smaller and inexperi-
enced �rms (with little prior drug development) are less likely to quit a project than
larger and experienced incumbents. These �ndings echo our theoretical prediction
that startups learn more from established �rms than the other way around.

A new information "paradox"? Intuition suggests that information should con-
fer a strategic advantage. In our model, it is a disadvantage. The fact that in-
formation can have paradoxical consequences in multi-person settings is, of course,

7Around 2006, a new kind of technology for television display screens� emission display� seemed
very promising. The main competitors to develop this were Sony and a Canon/Toshiba joint venture.
Sony abandoned the technology publicly in 2009 and other �rms followed soon after.
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well-understood and one may rightly wonder whether our main result is just a mani-
festation of a known phenomenon.
It is known that information may have a negative value. Hirshleifer (1971) showed

that publicly available information may make all agents worse o¤ ex ante. There are
also examples of games in which information privately available to an agent reduces
his or her ex ante payo¤(see Bassan et al., 2003 or Maschler et al., 2013 for examples).
One might rightly wonder then whether, in the game we study, the value of private
information is negative as well. This is not the case. We show below that in the
upstart equilibrium, the value of information is positive for both �rms� each �rm�s
expected payo¤ is increasing in the quality of its own information. Theorem 1 above
is a comparison of payo¤s across �rms and does not contradict the fact that each �rm
has the individual incentive to become better informed.
It is also known that in many situations, there is a second-mover advantage. Does

the competitive advantage of the startup stem from the fact that it moves second
and is able to learn the incumbent�s information? This is not the case either. In our
model, the order of moves (when to exit) is not speci�ed exogenously; rather it is
determined in equilibrium. For some signal realizations, the incumbent exits early
and the startup learns from the incumbent. In others, the startup exits early and the
incumbent learns from the startup.
In our model, the incumbent has a competitive disadvantage because its superior

information dulls its incentives to learn relative to the startup. The marginal value to
the incumbent of learning the startup�s poor information is smaller than the marginal
value to the startup of learning the incumbents better information. The startup is
willing to wait-and-see whereas the incumbent is not. But how do we know that
this is the reason for the "paradox"? At the end of Section 4 we study a variant of
the main model in which �rms cannot observe each other�s exit decisions. All other
aspects of the model remain unchanged but now there is no possibility of learning
from each other. We show that once there is no possibility of learning, the "paradox"
disappears� in the unique equilibrium, the expected payo¤ of the better-informed
�rm is now higher than that of its rival.

Overcon�dence The popular press is full of stories of brash Silicon Valley entre-
preneurs who embark on risky projects that established �rms deem unworthy. Most
of these startups fail but some do succeed and perhaps lead to the kinds of disrup-
tion that is observed. Some studies have argued that this over-investment in risky
projects stems not from risk-loving preferences but rather from overcon�dence.8 As
one observer of the startup phenomenon has written:

"In the delusions of entrepreneurs are the seeds of technological progress."
(Surowiecki, 2014)

8See, for example, Wu and Knott (2006). Another study found that entrepreneurs are prone to
overestimate their own life spans relative to the rest of the population (Reitveld et al. 2013)!
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In this view, the Elon Musks of the world drive innovation because of unwarranted
self-con�dence. They remain optimistic in environments that the GMs of the world
are pessimistic about, and perhaps realistically so.
Even though our model and analysis has no behavioral or psychological elements,

it can be seen as providing a rational reinterpretation of such behavior. When the
incumbent �rm�s information is not favorable to the project while the startup�s is, the
former is pessimistic and the latter optimistic. The startup invests in R&D while the
better-informed incumbent does not. In these circumstances, the rational optimism
of the startup would be observationally equivalent to overcon�dence. In single-person
problems, Benoît and Dubra (2011) argued that in many situations a fully rational
Bayesian agent may end up with beliefs that, to an outside observer, would seem
overcon�dent. They showed that this "apparent overcon�dence" could be generated
solely by the structure of information available to the agent. Our model and equilib-
rium can be interpreted as doing the same, but now in a strategic situation with more
than one agent. The postulated information structure and the upstart equilibrium
results in behavior that an outside observer may well attribute to overcon�dence.
The incumbent may also be a victim of apparent overcon�dence� it is so sure

of its own information that it does not �nd it worthwhile to try to learn what the
startup knows. This is the main driving force of our result but again, its basis is not
psychological. Rather, it is the result of rational calculation.

Related literature The basic model of this paper is rather standard. R&D races
where the arrival times of success are exponentially distributed and there is uncer-
tainty about the arrival rates were �rst studied by Choi (1991). Malueg and Tsutsui
(1997) extend Choi�s model to allow for �exibility in the intensity of R&D. In a variant
of Choi�s model, Wong (2018) examines the consequences of imperfect patent protec-
tion thereby relaxing the winner-take-all structure common to most of the literature.9

Chatterjee and Evans (2004) introduce another kind of uncertainty� there are two
alternative paths to success and it is not known which is the correct one. Firms may
switch from one path to another based on their beliefs. Das and Klein (2020) study
a similar model and show that there is a unique Markov perfect equilibrium which is
e¢ cient when �rms are symmetric in R&D ability and not otherwise.
In all of these models, however, there is no asymmetry of information� �rms�

equilibrium beliefs are identical. In our model, �rms receive private signals prior to
the race and the resulting asymmetry of beliefs is the key to our results.
The model of Moscarini and Squintani (2010) is, in its basic structure, most

closely related to ours. These authors study a very general set-up with arbitrary
distributions of arrival times (not necessarily exponential), continuous signals and
di¤ering costs and bene�ts of R&D. They show the possibility that the exit of one

9In Wong�s model the feasibility of the projects is independent across �rms and so one �rm cannot
learn from the other �rm�s lack of success. In our model, and the others mentioned, the feasibility
is perfectly correlated.
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�rm leads the other to regret staying as long� the �rm su¤ers from a "survivor�s
curse"� and so it also exits as soon as possible. Our model di¤ers from that of
Moscarini and Squintani in that we have discrete states and signals. At the same
time, it specializes their model by assuming exponentially distributed arrival times,
identical costs and bene�ts of R&D and comparable information. Moscarini and
Squintani also point to a "quitter�s curse"� regret at exiting too early. When the
�rms�information is comparable, as we assume, even the curses are asymmetrically
distributed. In equilibrium, the better-informed �rm is subject to both curses while
the less-informed �rm is never subject to the survivor�s curse. Finally, we derive
circumstances in which there is a unique equilibrium outcome and these too depend
on the relative quality of the �rms�information.

Strategic experimentation Our model is related to those of strategic experi-
mentation, especially with exponential bandits as in Keller, Rady and Cripps (2005).
Unlike our model, the latter are not winner-take-all as one person�s success does not
preclude the other�s. Also, in these models it is possible to switch back and forth
between the risky and safe arms, unlike the irrevocable exit assumption we make.
Strategic experimentation models typically have multiple Markov equilibria whereas
ours has a unique Nash equilibrium. Another di¤erence is that whereas equilibria
of strategic experimentation models display under-investment relative to a planner�s
solution� there is free-riding� in our model �rms over-invest.
While most of these models were studied under symmetric information, in re-

cent work, Dong (2018) has studied a variant with asymmetric and comparable
information� one person has a private signal but the other is completely uninformed.10

In the equilibrium she studies, this asymmetry induces more experimentation than if
the situation were symmetric.

Wars of attrition Our model also shares important features with the war of
attrition� in particular, the winner-take-all and irrevocable exit assumptions. There
is, of course, a vast literature on wars of attrition with and without incomplete infor-
mation. A related paper in this vein is by Chen and Ishida (2017), who study a model
which combines elements from strategic experimentation with wars of attrition. As in
strategic experimentation models, one �rm�s successful innovation does not preclude
successful innovation by the other �rm. As in the war of attrition, exit by one �rm
ends the game. Firms are asymmetric in how e¢ cient they are at R&D. There is a
mixed strategy equilibrium and Chen and Ishida (2017) exhibit the possibility that
the less e¢ cient �rm may win more often.

The remainder of the paper is organized as follows. The model of an R&D race is
outlined in the next section. Section 3 studies, as a benchmark, the case of a single

10Klein and Wagner (2018) study a bandit problem where the quality of information of the players
is the same.
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�rm without competition. There is no surprise here� if alone, the better informed
�rm is more likely to succeed than the less informed �rm. In Section 4 we then study
the case of two competing �rms and exhibit the upstart equilibrium mentioned above
(Proposition 1). We then show that this equilibrium is unique when the asymmetry in
the quality of information is large (Proposition 2). These two propositions establish
Theorem 1, while Proposition 3 identi�es conditions under which there is a unique
equilibrium with a strict payo¤ ranking. We also show that despite the fact that
in equilibrium the less-informed �rm has lower payo¤, it would still prefer higher
quality information. In other words, the value of information is positive. Section 5
compares the equilibrium outcome to a planner�s solution and �nds that relative to
the planner, competition leads to over-investment in R&D. Section 6 concludes. An
online appendix to this paper shows that the main results generalize when the �rms
may get more than two signals and so have �ner information.

2 Preliminaries

Two �rms compete in an R&D race to produce an innovation. Time runs continuously,
the horizon is in�nite and the interest rate is r > 0. The �rm that succeeds �rst will
obtain a patent that yields �ow monopoly pro�ts ofm forever after. Each �rm decides
on how long it wants to actively participate in the race, if at all, and must incur a
�ow cost of c while it is active. A �rm only chooses whether or not to be active, and
not its intensity of R&D. Once a �rm quits, it cannot rejoin the race. Also, if a �rm
quits at time t; say, then this is immediately observed by the other �rm.11 The game
ends either if one of the �rms succeeds or once both �rms quit.
Whether or not the innovation is worth pursuing is uncertain, however, and de-

pends on an unknown state of nature that may be G ("good") or B ("bad") with
prior probabilities � and 1��, respectively. In state B; the innovation is not techno-
logically feasible and all R&D activity is futile. In state G; it is feasible and success
arrives at a Poisson rate � > 0 per instant, independently for each �rm provided, of
course, that the �rm is still active. This means that the distribution of arrival times
of success is exponential, that is, the probability that in state G a �rm will succeed
before time t is 1� e��t:
The two �rms are alike in all respects but one� �rm 1 (the "incumbent" or estab-

lished �rm) is better informed about the state of nature, G or B, than is �rm 2 (the
"startup" or entrant �rm). Speci�cally, before the race starts, each �rm i receives
a noisy private signal si 2 fgi; big about the state.12 Conditional on the state, the
11This could happen with a delay � > 0 so that if a �rm quits at time t; the other �rm learns of

this only at time t+�: We have chosen to set � = 0 to simplify the exposition but our analysis is
robust to the case when � is small (details are available from the authors).
12In an online appendix we show that the analysis of the paper extends to the case where the

�rms�information is �ner� that is, they receive one of multiple signals.
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signals of the two �rms are independent and

Pr [gi j G] = Pr [bi j B] = qi > 1
2

We will refer to qi as the quality of i�s signal or information.13 Throughout, we will
assume that �rm 1�s signal is of higher quality than that of �rm 2 in the sense that
q1 > q2 and so �rm 1 is better informed.
Denote by p (si) the posterior probability that the state is G conditional on the

signal si; that is,
p (si) = Pr [G j si]

and similarly, denote by p (s1; s2) the posterior probability that the state is G condi-
tional on the signals (s1; s2), that is,

p (s1; s2) = Pr [G j s1; s2]

It is easy to see that since �rm 1�s signal is more accurate than �rm 2�s signal, that
is, q1 > q2;

p (b1; b2) < p (b1; g2) < p (g1; b2) < p (g1; g2) (1)

It is useful to de�ne p� to be such that if a �rm believes that the probability that
the state is G is p�; then the �ow expected gain is the same as the �ow cost. Thus,
p� is de�ned by

p��|{z}
success rate

� m

r|{z}
gain

= c|{z}
cost

and so

p� =
rc

�m
and we will suppose that 0 < p� < 1:
The following de�nition will prove useful in the subsequent analysis. Suppose

both �rms have a common belief at time 0 that the probability of state G is p0 and
with this belief both engage in R&D at time 0: As time elapses and both �rms are
active but neither �rm has been successful, the �rms become increasingly pessimistic
that the state is G and the posterior probability that the state is G decreases. At
time t; the common belief pt is such that14

pt
1� pt

= e�2�t
p0

1� p0
13The assumption that Pr [gi j G] = Pr [bi j B] is made only for simplicity. It would be enough to

assume that �rm 1�s signals were more informative than �rm 2�s signals in the sense of Blackwell.
14This is just Bayes�rule in terms of odds ratios: given any event E ; we have

Pr [G j E ]
Pr [B j E ] =

Pr [E j G]
Pr [E j B] �

Pr [G]

Pr [B]
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since, conditional on the state being G; the probability that neither �rm has been
successful until time t is e�2�t.

De�nition 1 If the initial belief p0 > p�; T (p0) is the time when, absent any success
by either �rm, this belief will decay to p�; that is,

e�2�T (p0)
p0

1� p0
=

p�

1� p� (2)

If the initial belief p0 � p�; then T (p0) = 0:

Equivalently, for p0 > p�;

T (p0) =
1

2�
ln

�
p0

1� p0

�
� 1

2�
ln

�
p�

1� p�

�
To save on notation, we will write

T (si) � T (p (si)) (3)

and
T (s1; s2) � T (p (s1; s2)) (4)

The ranking of the posterior probabilities (see (1)) implies

T (b1; b2) � T (b1; g2) � T (g1; b2) � T (g1; g2)

and each of the inequalities is strict unless both sides are 0:

3 Single-�rm benchmark

Before studying the situation in which the two �rms are competing against one an-
other, it is useful to consider the case where each �rm acts in isolation. Comparing
the situation in which �rm 1 is alone to the situation in which �rm 2 is alone, we
obtain

Proposition 0 The probability that �rm 1 is successful when alone is greater than
the probability that �rm 2 is successful when alone. Firm 1�s payo¤ when alone is
also higher.

To establish the proposition, �rst note that if �rm i gets a signal si 2 fgi; big ;
then its belief that the state is G is p (si) at time 0: If p (si) � p� then the �rm should
not engage in R&D at all since its expected pro�ts from R&D are non-positive. But
if p (si) > p� then it is worthwhile to engage in R&D at time 0 and continue to do so

11
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Figure 1: Belief Decay

When two �rms are active, beliefs decay twice as fast (lower curve) as with one �rm (upper curve).

as long as its belief pt (si) at time t remains above p�: In terms of odds ratios, this
means that a solitary �rm should remain active as long as

pt (si)

1� pt (si)
= e��t

p (si)

1� p (si)
>

p�

1� p�

re�ecting the fact that the probability that a single �rm does not succeed until time
t is just e��t. The following result is immediate.

Lemma 3.1 A single �rm with signal si should quit at the earliest time t such that
pt (si) � p�:

Proof. If �rm i with signal si quits at time ti; its �ow pro�t is

r

Z ti

0

e�rt Pr [S0 (t)]
�
pt (si)

�m

r
� c
�
dt = �m

Z ti

0

e�rt Pr [S0 (t)] (pt (si)� p�) dt

where Pr [S0 (t)] = e��tp (si) + 1 � p (si) is the probability that there has been no
success until time t: Recall that p� = rc=�m: The result obviously follows.

The optimal quitting time for a �rm with initial belief p0 > p� is just 2T (p0) since
from the de�nition of T in (2),

e�2�T (si)
p0

1� p0
=

p�

1� p� (5)

12



Since the beliefs of a single �rm decay at one-half the rate of decay with two �rms�
two failures constitute worse news than one failure� it takes twice as long to reach
p�; as depicted in Figure 1. Since 2T (p0) is the optimal quitting time of a single �rm
with initial belief p0, using (5), the probability of success given p0 is

p0
�
1� e�2�T (p0)

�
=
p0 � p�
1� p�

Of course, if p0 � p�; then it is optimal to not enter. Thus, the probability of success
given p0 is

Pr [Si] = max
�
0;
p0 � p�
1� p�

�
which is a convex function of its belief p0:
Since q1 > q2; we have that �rm 1�s posterior beliefs at time 0 (p (b1) ; p (g1))

constitute a mean-preserving spread of �rm 2�s posterior beliefs (p (b2) ; p (g2)) : Now
it follows that

E [Pr [S1]] � E [Pr [S2]]
and so the ex ante probability of �rm 1 succeeding when alone is at least as large as
that of �rm 2.
Finally, since this is a single-�rm decision problem and �rm 1�s signal is more

informative than that of �rm 2 (in the sense of Blackwell), it follows that �rm 1�s
expected payo¤ is also higher.
This completes the proof of Proposition 0.

4 Upstart equilibrium

In this section, we �rst establish that with two �rms there is always an equilibrium
that results in the upstart outcome. Unlike in the case with a single �rm, both
�rms can learn a rival�s signal via its actions. Indeed, as we will see, this learning
is asymmetric and the less-informed �rm learns more from its rival than the better-
informed �rm. Formally,

Proposition 1 There exists a perfect Bayesian equilibrium in which the less-informed
�rm 2�s winning probability and payo¤ are both no less than those of the better-
informed �rm 1.

In this game, a strategy for �rm i is a pair of functions (� i; �i) where � i : fgi; big !
R+[f1g and �i : fgi; big�R+ ! R+[f1g : The �rst component � i (si) is the time
at which �rm i with signal si decides to quit unilaterally� that is, if he or she has
not received any information that the other �rm has quit. If � i (si) =1; this means
that the �rm decides to never quit unilaterally. The second component determines

13



�i (si; tj) as the time at which �rm i with signal si quits after learning that the other
�rm quit at time tj: Of course, �i (si; tj) � tj:
Since this is a game in continuous time it is worthwhile to explicitly state how

strategies translate into outcomes. If the signals are (si; sj); and � i (si) < � j (sj) ;
then of course �rm i exits at � i (si) and �rm j at �j (sj; � i (si)) : If � i (si) = � j (sj) ;
then both �rms exit simultaneously.15

The following strategies result in an equilibrium in which �rm 2�s payo¤ is no less
than that of �rm 1. Firm 1�s unilateral exit times are

� �1 (g1) = T (g1; g2) and �
�
1 (b1) = T (b1)

(see (3) and (4)) and �rm 1�s exit times following an exit by �rm 2 at some time t2
are

��1 (g1; t2) =

8<:
T (g1; b2) if t2 = T (g1; b2)
2T (g1; b2)� t2 if t2 < T (g1; b2)
2T (g1; g2)� t2 if T (g1; b2) < t2 < T (g1; g2)

��1 (b1; t2) =

�
max (t2; 2T (b1; b2)� t2) if t2 � T (b1)
t2 if t2 > T (b1)

If �rm 2 exits at a time t2 � T (g1; b2) ; then �rm 1 believes that s2 = b2 and if �rm
2 exits at t2 > T (g1; b2) ; believes that s2 = g2:
Firm 2�s unilateral exit times are

� �2 (g2) = T (g1; g2) and �
�
2 (b2) = T (g1; b2)

and its exit times following an exit by �rm 1 at some time t1 are

��2 (g2; t1) =

�
2T (b1; g2)� t1 if t1 � T (b1)
2T (g1; g2)� t1 if T (b1) < t1 < T (g1; g2)

��2 (b2; t1) =

�
max (t1; 2T (b1; b2)� t1) if t1 � T (b1)
2T (g1; b2)� t1 if T (b1) < t1 < T (g1; b2)

If �rm 1 exits at a time t1 � T (b1) ; then �rm 2 believes that s1 = b1 and if �rm 1
exits at t1 > T (b1) ; believes that s1 = g1:
These strategies result in the "upstart outcome" depicted in Figure 2. When the

signals are (b1; b2) ; �rm 1 exits early at T (b1) ; as de�ned in (3), and �rm 2 exits
immediately afterwards.16 When the signals are (g1; g2) ; both �rms exit at time
T (g1; g2) : When the signals are (g1; b2) ; �rm 2 exits at time T (g1; b2) and �rm 1
follows immediately. Finally, when the signals are (b1; g2) ; �rm 1 exits at T (b1) and
�rm 2 exits at 2T (b1; g2)� T (b1) :
15We have only de�ned pure strategies here as the equilibrium we construct below does not involve

any randomization. When we show that the equilibrium outcome is unique, we will introduce and
consider randomized strategies as well.
16It could be, of course, that T (b1) = 0 and in that case exiting at T (b1) is the same as not

entering.
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Figure 2: Upstart Equilibrium

Firm 1 (top) with signal b1 exits at T (b1). The exit decision of �rm 1 with g1 depends on �rm
2. If �rm 2 exits at T (g1; b2), then �rm 1 with signal g1 follows immediately, depicted as a U-
turn. Otherwise, it stays until T (g1; g2). Similarly, the exit decisions of �rm 2 (bottom) depend
on �rm 1. If �rm 1 exits at T (b1), �rm 2 with signal b2 follows immediately and with g2, exits at
2T (b1; g2)� T (b1). Otherwise, �rm 2 with b2 exits at T (g1; b2) and with g2, exits at T (g1; g2).

Why is this an equilibrium? First, consider �rm 1 with signal b1: Based on its
information alone b1 would want to quit unilaterally at T (b1) : The only reason it
may want to stay longer is if by doing so, it could learn 2�s signal. However, no
matter what 2�s signal is, it cannot be optimal for b1 to stay after T (b1; g2). But
�rm 2�s strategy dictates that with either signal, it will not be the �rst to quit before
T (b1; g2) : This means that it is unpro�table for b1 to stay long enough to learn 2�s
signal. Thus, b1 quits unilaterally based only on its own signal, that is, at time T (b1)
which is just � �1 (b1).
The situation is di¤erent if �rm 1 has signal g1: Now it is certainly worthwhile for

1 to wait until T (g1; b2) because T (g1) > T (g1; b2). If 2 quits at this time, then 1
learns that its signal is b2 and then it is optimal for 1 to follow 2 immediately. If 2
does not quit at T (g1; b2) ; then 1 infers that 2�s signal is g2 and then it is optimal
for g1 to stay until T (g1; g2) ; again as dictated by the equilibrium strategy.
Now consider �rm 2 with signal b2. It knows that �rm 1�s signal will be revealed

at T (b1) and since T (b1) < T (b2) ; it is optimal for b2 to wait until T (b1) to learn 1�s
signal. If 1 quits at T (b1) ; then its signal must be b1 and then since T (b1) > T (b1; b2) ;
it is optimal for b2 to quit immediately. If 1 does not quit at T (b1), then its signal
must be g1 and then it is optimal for b2 to quit at T (g1; b2) since g1 will surely stay
until that time as well. This is exactly what is prescribed by � �2:
Finally, consider �rm 2 with signal g2: As above, it knows that �rm 1�s signal will

be revealed at T (b1) and it is optimal to wait at least until then to learn 1�s signal. As
above, if 1 quits at T (b1) ; then its signal must be b1 and to quit at 2T (b1; g2)�T (b1)
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is then optimal for g2. This is because the belief of �rm 2 reaches p� at that time.17

If 1 does not quit at T (b1) ; then its signal must be g1 and since 1 will then stay
until T (g1; g2) ; it is optimal for 2 to stay until then as well. Again, this is what � �2
dictates.
It is clear that given their o¤-equilibrium beliefs, both �rms are optimizing as

well.18 Thus, the strategies (��i ; �
�
i ) constitute an equilibrium.

The equilibrium outcome has the feature that except in the case when the sig-
nals are (b1; g2) ; the �rms exit at the same time and, when they do so, have the
same winning probabilities and expected pro�ts. When the signals are (b1; g2) ; how-
ever, �rm 1 exits �rst at T (b1) and after seeing this, �rm 2 exits optimally at time
max (T (b1) ; 2T (b1; g2)� T (b1)) : Again, �rm 2�s winning probability and payo¤ are
at least as great as those of �rm 1:
This establishes Proposition 1.

It is worthwhile to note that when the signals are (b1; g2) ; the learning is asym-
metric. Firm 2 �nds it in its interest to wait until �rm 1�s signal is revealed� which
occurs at time T (b1)� but �rm 1 does not �nd it worthwhile to wait until �rm 2�s
signal will be revealed� which occurs at T (g1; b2) > T (b1). It is precisely the fact
that �rm 1�s signal is of higher quality than �rm 2�s signal that leads to this asym-
metry. Ex post, in this case, �rm 1 su¤ers from regret. Had it known that �rm 2�s
signal was g2; it would have liked to stay until T (b1; g2) but knowing only its own
signal b1; it is optimal to exit at T (b1) < T (b1; g2).

Uniqueness We now argue that when the informational advantage of �rm 1 is
large, that is, �xing all other parameters, q2 is small relative to q1, then the upstart
equilibrium outcome is the unique Nash equilibrium outcome.

Proposition 2 When the established �rm�s informational advantage is large, there
is a unique Nash equilibrium outcome. Precisely, for every q1 there exists a q+2 such
that for all q2 < q+2 ; there is a unique Nash equilibrium outcome.

Proposition 2 is proved by showing that the iterated elimination of dominated
strategies leaves a single outcome. The argument is somewhat involved� there are
many rounds of elimination� and so a formal proof is relegated to Appendix A. Here
we indicate the basic idea and the most important step.
Let us consider �rm 1�s unilateral exit times � 1 (b1) and � 1 (g1) : It is clear that �rm

1 with signal g1 should stay at least until T (g1; b2), the optimal exit time when the
2�s information is as bad as possible. In other words, for g1 to exit before T (g1; b2) is

17Formally, by de�nition p(b1;g2)
1�p(b1;g2)e

��T (b1)e��(2T (b1;g2)�T (b1)) = p�

1�p� : The �rst exponential term
is the probability that �rm 1 did not succeed and the second is the probability that �rm 2 did not
do so either.
18It can be argued that the particular choice of o¤-equilibrium beliefs does not a¤ect the equilib-

rium outcome.
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dominated. Similarly, it is clear that �rm 1 with signal b1 should not stay longer than
T (b1; g2), the optimal exit time when 2�s information is as good as possible. Thus,
for b1 to stay longer than T (b1; g2) is also dominated. Since T (b1; g2) < T (g1; b2) ;
we have � 1 (b1) � T (b1; g2) < T (g1; b2) � � 1 (g1) : In other words, �rm 1�s strategy
fully reveals its information at the latest by time T (b1; g2). Thus �rm 2 can learn
�rm 1�s signal for sure by investing until T (b1; g2) : The key step is that when the
quality of �rm 2�s information is poor relative to that of �rm 1, that is, q2 is small
relative to q1; T (b1; g2) is small and �rm 2 can learn 1�s information at a relatively
small cost. Thus, it is dominated for �rm 2 to exit before learning 1�s information.
The remaining rounds of elimination are rather straightforward and do not require
any conditions on the relative quality of the �rms�information.
As shown in Appendix A, this process of iterated elimination of dominated strate-

gies results in a single outcome. In the iterated process in some rounds we eliminate
weakly dominated strategies. As a �nal step, it is shown that there cannot be any
other Nash equilibrium outcome� the weakly dominated strategies that were elimi-
nated cannot be part of any Nash equilibrium.

We have shown that when �rm 1�s informational advantage is large, there is a
unique equilibrium outcome. When this advantage is small, however, there may be
other equilibria as well. In particular, in the symmetric situation with q1 = q2;
there are at least two asymmetric equilibria. One is the upstart equilibrium speci�ed
above in which �rm 2�s payo¤ is higher than that of �rm 1: But now there is also
an equilibrium which is a "mirror image" of the upstart equilibrium with the roles of
�rms 1 and 2 interchanged. The "mirror equilibrium" persists as long as q1 � q2 is
small.

Strict ranking of payo¤s When is �rm 2�s payo¤ strictly higher than that of �rm
1? To begin, it is useful to consider two cases where the payo¤ ranking is not strict�
the two �rms�payo¤s are the same. First, if �rm 1 is perfectly informed (q1 = 1),
then it will enter the race if and only if the state is G: Then �rm 2 cannot do better
than to follow �rm 1: Firm 2 should enter and if it sees that 1 did not, then it should
exit immediately. If �rm 1 entered, then �rm 2 should stay. The second extreme case
is when �rm 2 has no information (q2 = 1

2
). Firm 1 should then base its actions only

on its own information and again �rm 2 cannot do better than to follow �rm 1: In
both of these extreme cases, in every circumstance, the two �rms stay for the same
amount of time and so their payo¤s are the same.
Thus, for the payo¤s to be strictly ranked it is necessary that �rm 1 not be

perfectly informed and that �rm 2 have some useful information. So suppose that
q1 < 1 and q2 > 1

2
: Indeed the payo¤ ranking is strict when, for �xed q1; the quality of

�rm 2�s information, q2, is relatively high and the "curse of knowledge" is particularly
acute.
To see this formally, recall that in the upstart equilibrium, the two �rms�payo¤s
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Figure 3: Uniqueness and Strict Payo¤ Ranking

There is a unique equilibrium outcome below the upper curve. The payo¤ ranking is strict above
the lower curve.

are potentially di¤erent only when the signals are (b1; g2) : In this case, �rm 1 exits
at T (b1) and �rm 2 stays until 2T (b1; g2) � T (b1) : Firm 2 stays strictly longer if
T (b1; g2) > T (b1) : But given q1 < 1 and q2 > 1

2
; this is the case if and only if

T (b1; g2) > 0 which is the same as p (b1; g2) > p�: Note that a necessary condition for
this is that the prior probability � > p�: De�ne

q�2 = min
�
q2 2

�
1
2
; q1
�
: p (b1; g2) � p�

	
(6)

Note that if T (b1) > 0; then T (b1; g2) > 0, and the payo¤ ranking is strict. In this
case, q�2 =

1
2
. Fixing all other parameters, T (b1) > 0 when q1 is relatively small so

that �rm 1 enters even with b1: Moreover, q�2 is non-decreasing in q1:
Thus, in the upstart equilibrium, if q2 is large enough, speci�cally, q2 > q�2 ; �rm

2�s winning probability and payo¤ are both strictly higher than those of �rm 1: At
the same time Proposition 2 shows that the upstart equilibrium outcome is unique if
q2 is small enough, speci�cally q2 < q+2 (de�ned in (7)). Are the two conditions on q2
compatible? The answer is yes. Formally,

Proposition 3 Assuming � > p�; for any q1 2
�
1
2
; 1
�
; it is the case that q�2 < q

+
2 : In

other words, there is an open interval of q2�s for which there is a unique equilibrium
with a strict payo¤ ranking.

Figure 3 depicts how q�2 and q
+
2 vary with q1:
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In the argument for uniqueness outlined above (and formally proved in Appendix
A), the only place that q2 is required to be small relative to q1 is to show that when
2 has the signal b2; it is willing to wait as long as T (b1; g2) for 1�s information to be
revealed. The threshold was named q+2 , as de�ned in (7) in Appendix A. We will
show that q�2 < q

+
2 :

As above, if T (b1) > 0; then by de�nition, q�2 = 1
2
which is certainly smaller

than q+2 : On the other hand, if T (b1) = 0, and q2 = q�2 ; then p (b1; g2) = p� and
so T (b1; g2) = 0 as well. Now we will argue that when q2 = q�2 ; the equilibrium is
unique. To see this, recall if T (b1; g2) = 0 then it is dominated for �rm b1 to enter.
This means that �rm 2 can learn �rm 1�s signal at zero cost. Now from the de�nition
of q+2 , q

�
2 < q

+
2 :

This establishes Proposition 3.

A numerical example It is useful to see the workings of the upstart equilibrium
in a numerical example.
Suppose the �ow payo¤ from the patent m = 2 and the �ow cost of R&D c = 0:5:

The arrival rate of success � = 0:1 and the interest rate r = 0:05: Thus, p� =
(rc=�m) = 0:125:
The prior probability of state G is � = 1

2
: The quality of �rm 1�s signal q1 = 0:85:

With these parameters, there is a unique equilibrium for all q2 < q+2 ' 0:77; the
largest value of q2 for which �rm 2 with signal b2 is willing to wait until T (b1; g2) to
see 1�s signal (q+2 is de�ned in (7) in Appendix A). There is a strict payo¤ ranking
for all q2 > q�2 =

1
2
(q�2 is de�ned in (6)).

When q2 = 0:75; the upstart equilibrium outcomes are as follows. When the
signals are (b1; b2) ; �rm 1 exits at T (b1) = 1:06 and �rm 2 follows immediately. When
the signals are (b1; g2) �rm 1 exits at T (b1) and �rm 2 stays until 2T (b1; g2)�T (b1) =
12:04:When the signals are (g1; b2) ; �rm 2 exits at T (g1; b2) = 6:55 and �rm 1 follows
immediately. Finally, when the signals are (g1; g2) ; both exit at T (g1; g2) = 23:89:
Figure 4 traces the evolution of �rm 2�s beliefs when its signal is g2 and it learns

�rm 1�s signal at time T (b1). If it is g1, then g2�s beliefs jump up and if it is b1; they
jump down.
The unique equilibrium payo¤s of the �rms when (q1; q2) = (0:85; 0:75) are ��1 =

0:275 and ��2 = 0:296: Firm 2�s payo¤ is 7% higher than that of �rm 1: The ex ante
probability that �rm 1 wins the patent is 0:43 and the ex ante probability that �rm
2 wins is 0:50:

Value of information In the upstart equilibrium, the startup �rm 2 not only wins
more often than �rm 1; it also obtains a higher equilibrium payo¤. This suggests
perhaps that �rm 1 could be better o¤ with less precise information. This is not
the case, however. We show next that despite the fact that the equilibrium payo¤
of the less-informed �rm is higher than that of the better-informed �rm, the value of
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Figure 4: Evolution of Firm 2�s Beliefs with Signal g2
Firm 2�s initial belief is p(g2) and decays at the rate 2� with the lack of success. Firm 2�s belief is
revised at time T (b1). If �rm 1 exits at that time, �rm 2 infers that 1�s signal was b1 and 2�s beliefs
jump down to the lower curve and then decay at a slower rate � since now it is the only �rm in the
race. If �rm 1 does not exit at that time, �rm 2 infers that 1�s signal was g1 and 2�s beliefs jump up
to the upper curve where they continue to decay at a rate 2� since both �rms are still in the race.

information for both �rms is positive.19

Proposition 4 Suppose q1 > q2. Then in the upstart equilibrium, �rm 1�s payo¤ is
increasing in q1 and �rm 2�s payo¤ is increasing in q2:

The formal proof of this proposition is in Appendix B but the fact that �rm 1�s
payo¤ is increasing in q1 can be understood by reasoning as follows. Consider the
following arti�cial situation:
Firm 1 has to decide when to exit after exogenously receiving three signals b1;

(g1; b2) and (g1; g2) with the appropriate probabilities in each state (in state G; these
are 1 � q1; q1 (1� q2) and q1q2). Firm 2�s behavior is also exogenously speci�ed� it
never exits.
It is clear that in this arti�cial situation, the optimal stopping times for �rm 1 are

T (b1) ; T (g1; b2) and T (g1; g2) ; the same as in the upstart equilibrium. The payo¤s
are also the same. This reason is that, in the upstart equilibrium, �rm 2 never exits

19Bassan et. al (2003) exhibit a simple example where in an otherwise symmetric game, the payo¤
of the uninformed player 2 is higher than that of the informed player 1. In that game, however, the
value of information to player 1 is negative.
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Figure 5: Value of Information

Equilibrium payo¤s of both �rms are depicted as functions of q1. The kink in the ��2 curve occurs
when q1 is high enough so that T (b1) = 0 and the two curves merge once T (b1; g2) = 0 as well.

before �rm 1 and what happens after a �rm exits has no e¤ect on its payo¤s. But this
arti�cial situation is a single-person decision problem for �rm 1 and so information
has a positive value. Thus, it has positive value in the upstart equilibrium as well.

The fact that the value of information is positive for �rm 1 does not con�ict with
the fact that its payo¤ is lower than that of �rm 2: The �rst is a statement about the
derivative of ��1 with respect to q1. The second is a statement comparing the pro�t
levels of the two �rms. See Figure 5 which depicts, for �xed q2, the upstart equilibrium
payo¤s ��1 and �

�
2 as functions of q1: Notice that in the upstart equilibrium ��1 < �

�
2

even when q1 = q2: Of course, as discussed above, in that case there is a corresponding
"mirror equilibrium" as well in which the payo¤ ranking is reversed.
Proposition 4 shows that �rm 1 cannot increase its equilibrium payo¤ by decreas-

ing the quality of its information while still remaining better informed than �rm 2
(and assuming that the upstart equilibrium is played). Precisely, for all q2 < q01 < q1,
��1 (q

0
1; q2) < �

�
1 (q1; q2) where we have now explicitly indicated the dependence of the

equilibrium pro�ts on the qualities of the two �rms�signals.
But could �rm 1 bene�t from a drastic decrease in the quality of its information�

say, by replacing all its experienced researchers, who have a good idea of the feasibility
of the innovation, with new PhDs, who have none� thus becoming the less-informed
�rm? In terms of the model, suppose we start from a situation in which (q1; q2) =
(q0; q00) where 1

2
< q00 < q0 and compare it to a situation in which (q1; q2) =

�
1
2
; q00
�
so

that �rm 1 is now less informed than �rm 2. In this situation, there is again a unique
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Figure 6: Willful Ignorance

Starting from (q1; q2) = (q
0; q00) �rm 1 is worse o¤ by reducing its quality of information to q1 = 1

2 .

equilibrium, but this time it is �rm 1 which is the upstart.20 This equilibrium is what
we have called a "mirror equilibrium" since the roles of the �rms have been reversed.
If we denote payo¤s in the mirror equilibrium by ���i ; by symmetry we have (see
Figure 6) that ���1

�
1
2
; q00
�
= ��2

�
q00; 1

2

�
:When the quality of �rm 2�s information is 1

2
;

the upstart equilibrium outcome is unique and the expected pro�ts of the two �rms
are the same, that is, ��2

�
q00; 1

2

�
= ��1

�
q00; 1

2

�
:But in the region where the quality of

�rm 1�s information is higher than that of �rm 2; ��1 in increasing in both qualities
(Proposition 4 and Corollary 1 in Appendix B). Thus,

���1
�
1
2
; q00
�
= ��1

�
q00; 1

2

�
< ��1 (q

0; q00)

since q0 > q00 > 1
2
: This means that it is not a good idea for the informationally ad-

vantaged but competitively disadvantaged �rm 1 to become completely uninformed.
Of course, this argument applies not only to the case of complete ignorance, that

is, q1 = 1
2
: As long as, q1 > 1

2
; is such that p00 (g1; b2) � p� the same argument applies

(here p00 (g1; b2) = Pr [G j g1; b2] computed using qualities q1 and q2 = q00). This is
because the argument above only relies on the equality, ��2 (q1; q

00) = ��1 (q1; q
00) :

The message of here is: Don�t �re the experienced researchers. Willful ignorance
does not pay!

20Any attempt to carry out this exercise when there are multiple equilibria is, of course, fraught
with peril.
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Unobserved exit Why is better information a competitive disadvantage in the
R&D race studied in this paper? To explore this question consider a variation of the
model of the earlier sections in which a �rm�s exit decisions are unobserved by its
rival. In all other respects, the model is the same as outlined in Section 2. If exit is
unobserved, then �rms can no longer learn each other�s private information and now it
is no longer the case that better information is a competitive disadvantage. This then
serves to isolate the reason why better information is a disadvantage. The better-
informed �rm has a smaller incentive to learn from the less-informed �rm than the
other way around and it is this, and only this, that leads to the surprising conclusion
that the incumbent �rm is at a disadvantage.
With unobserved exit, a strategy for a �rm is merely a function � i : fbi; gig ! R+;

that is, a pair of unilateral exit times. We then have

Proposition 5 With unobserved exit, there is a unique Nash equilibrium � of the
R&D race. In this equilibrium,

� 1 (b1) � � 2 (b2) � � 2 (g2) � � 1 (g1)

and the payo¤ of the better-informed �rm 1 is greater than that of the less-informed
�rm 2.

A formal proof of the proposition is in the online appendix to the paper.

5 Planner�s solution

How does the upstart equilibrium compare to the solution of a "planner" who seeks
to maximize the joint expected pro�ts of the two �rms? To analyze such a planner�s
problem, suppose that the belief that the state is G is p0 > p� at time 0:
Since exit is irrevocable and it is never optimal to continue once the belief falls

below p�; the planner�s problem reduces to choosing a time s such that both �rms are
active until s � T (p0) and then one of the �rms exits. We now argue that it is optimal
for the planner to ensure that both �rms are active until T (p0) : (See Appendix C
for a formal proof.)
To see why, let us compare the situation where the planner shuts down one �rm�s

R&D activity at time s < T (p0) to a situation where the planner continues with both
�rms for an in�nitesimal time longer until s+ dt:When only one �rm is active in the
interval (s; s+ dt), the planner�s payo¤ is approximately

ps � �
m

r
� c

where ps is the planner�s belief at time s given that neither �rm has succeeded until
then. Note that this is positive because ps > p�: When both �rms are active in the
interval (s; s+ dt) ; the planner�s payo¤ is approximately

ps � 2�
m

r
� 2c
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In other words, when two �rms are active both the arrival rate of success as well as
the costs of R&D are doubled. Thus, it is not optimal to shut down one of the �rms
at any time s < T (p0) : This means that the joint pro�t-maximizing plan with any
initial belief p0 is for both �rms to invest in R&D as long as it is pro�table, that is,
as long as the updated belief pt > p� or alternatively, until time T (p0) :
How does the upstart equilibrium compare to the planner�s optimum?
Recall that in the upstart equilibrium, when the signals are (g1; b2) ; both �rms exit

at T (g1; b2) which is also the planner�s optimum exit time. The same is true when the
signals are (g1; g2) :When the signals are (b1; b2) the upstart equilibrium may involve
too much R&D when T (b1; b2) < T (b1) because in the upstart equilibrium both
�rms exit at T (b1) while the planner would want them to exit at T (b1; b2) : Finally,
when the signals are (b1; g2) �rm 1 exits at T (b1) while �rm 2 invests until time
2T (b1; g2) � T (b1) : Conditional on (b1; g2) ; the probability of success in this event
is then 1 � e�2�T (b1;g2) and this is the same as that in the planner�s solution. Notice
that while the overall probability of success in equilibrium is the same as that for
the planner, success arrives later in the former case. This is because in equilibrium,
when the signals are (b1; g2) only one �rm exits early� at time T (b1). This causes
"learning-from-failure" to slow down relative to the case when two �rms invest, which
is the planner�s solution.

Proposition 6 The overall probability of R&D success is higher in the upstart equi-
librium than in the planner�s optimum.

Thus, the overall probability of R&D success is higher in the upstart equilibrium
than in the planner�s optimum� there is over-investment in R&D. If we interpret
the planner�s problem as arising from a merger of the two �rms to form a monopoly
and the equilibrium as arising from competition, then this says that competition
enhances the chances of R&D success. This runs counter to the sentiments expressed
by Schumpeter (1942). This is also counter to the �ndings in the literature on strategic
experimentation where typically, there is under-investment (see Keller, Rady and
Cripps, 2005).

6 Conclusion

We have argued that, somewhat paradoxically, informational asymmetry favors star-
tups over incumbents. This purely informational e¤ect serves to enhance Arrow�s
replacement e¤ect. The e¤ect appears to be new� it does not stem from a negative
value of information or from a second-mover advantage. Rather it stems from the
fact that better information diminishes the incentives to learn from one�s rival.
At a theoretical level, we have shown that a natural R&D game, in which the only

asymmetry is informational, has the following features. There is a unique equilibrium
in which information is a competitive disadvantage even though it has positive value.
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The equilibrium is robust� it is almost the unique rationalizable outcome of the
game� and so the �nding is not a knife-edge result. Introducing small asymmetries
in R&D costs, abilities or the returns to invention would not overturn the results.

A Appendix: Uniqueness

In this appendix, we provide the formal proof that when the discrepancy in the two
�rms�information quality is large, there is a unique Nash equilibrium (Proposition
2). We do this via a process of iterated elimination of weakly/strongly dominated
strategies.21

In what follows, we will ascertain the optimal quitting time for the two �rms in
various situations. This quitting time will, as in Lemma 3.1, be determined by the
condition that a �rm�s belief that the state is G is equal to p�: But when another �rm
j is present, �rm i not only knows its own signal si but may learn �rm j�s signal sj
in the course of play. Thus, it may be the case that even if based on its own signal
alone, the belief is below p�; the possibility of learning sj in the future is a worthwhile
investment. The following analog of Lemma 3.1 is derived under the condition that
all such learning has already taken place. Thus we have

Lemma A.1 Let pit denote i�s belief at time t that the state is G:
(i) If pit > p�; then i should not quit at t:
(ii) Suppose that at time t �rm i believes with probability one that j�s signal is sj: If
pit � p�; then �rm i should quit at t.

Proof. The �ow pro�t of �rm i if it quits at time ti is

r

Z ti

0

e�rt Pr [S0 (t)]
�
pit
�m

r
� c
�
dt = �m

Z ti

0

e�rt Pr [S0 (t)] (pit � p�) dt

where pit is �rm i�s belief at time t given all the information it has and Pr [S0 (t)] is
the probability that there has been no success until time t: This is the payo¤ because
the chance that both �rms will succeed at the same instant is zero. Note that �rm
j�s quitting time tj a¤ects the instantaneous payo¤ only through its e¤ect on i�s
belief pit� before tj the belief pit declines rapidly since there are two unsuccessful
�rms whereas after j quits at time tj the belief declines slowly since there is only one
unsuccessful �rm.

With the lemma in hand, we are ready to begin the iterated procedure for removing
dominated strategies.

21In fact the upstart equilibrium is also the unique outcome resulting from iterated elimination of
conditionally dominated strategies (Shimoji and Watson, 1998).
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A.1 Step 1

Denote by � the original game and by � (n) the game after n rounds of elimination.
In what follows, Lemma A.1 will invoked repeatedly in the following manner: if the
two signals are known to be (s1; s2) ; then a �rm that exits at t < T (s1; s2) would
leave some money on the table since that �rm�s belief time t; pit > p�:

IEDS Round 1

Claim 1 (a) Any strategy of �rm 1 such that � 1 (g1) < T (g1; b2) is weakly domi-
nated in �:

Proof. Quitting at � 1 (g1) < T (g1; b2) is weakly dominated by quitting at � 1 (g1) =
T (g1; b2) : First, ifmax (� 2 (b2) ; � 2 (g2)) � T (g1; b2) then quitting at � 1 (g1) < T (g1; b2)
is strictly worse for g1 than quitting at T (g1; b2) : If max (� 2 (b2) ; � 2 (g2)) < T (g1; b2) ;
then quitting at � 1 (g1) < T (g1; b2) is strictly worse than quitting at T (g1; b2) if
� 1 (g1) < max (� 2 (b2) ; � 2 (g2)) and is equivalent if max (� 2 (b2) ; � 2 (g2)) < � 1 (g1) :

Claim 1 (b) Any strategy of �rm 2 such that � 2 (g2) < T (b1; g2) is weakly domi-
nated in �.

Proof. The proof is the same as in the previous claim with the identities of the �rms
interchanged.

It is important to note that in this round the strategies eliminated are not strictly
dominated. The reason is that a strategy (� 1; �1) that calls on �rm 1 with signal g1
to quit at a time such that 0 < � 1 (g1) < T (g1; b2) is not strictly worse than quitting
at T (g1; b2) against a strategy (� 2; �2) such that � 2 (b2) = 0 = � 2 (g2) : Since both
types of �rm 2 quit at time 0, the choice of � 1 (g1) is irrelevant. More generally, such
a � 1 (g1) is not strictly worse than T (g1; b2) against any strategy (� 2; �2) such that
max (� 2 (b2) ; � 2 (g2)) < � 1 (g1) :

IEDS Round 2

Claim 2 (a) Any strategy of �rm 1 such that � 1 (b1) > T (b1; g2) is strictly dominated
in � (1) :

Proof. If �rm 2�s signal is g2, then from Claim 1 (b) � 2 (g2) � T (b1; g2) : In this case,
for �rm 1 to choose � 1 (b1) > T (b1; g2) is strictly worse than � 1 (b1) = T (b1; g2). On
the other hand, if �rm 2�s signal is b2; then for �rm 1 to choose � 1 (b1) > T (b1; g2) is
no better than � 1 (b1) = T (b1; g2). Thus, the expected payo¤ from � 1 (b1) > T (b1; g2)
is strictly lower than the expected payo¤ from quitting at T (b1; g2).

Claim 2 (b) Any strategy of �rm 2 such that for s2 = b2 or g2; � 2 (s2) < T (b1; b2)
is strictly dominated in � (1) :
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Proof. Clearly, the worst possible case for �rm 2 is if �rm 1 has the signal b1: For
�rm 2 with either signal exit before T (b1; b2) is no better than staying until T (b1; b2) :
But if �rm 1�s signal is g1, then from Claim 1 (a) � 1 (g1) � T (g1; b2) � T (b1; b2).
Since with positive probability �rm 1 will stay until T (b1; b2) ; it is strictly dominated
for �rm 2 to quit before then.

IEDS Round 3

Claim 3 Given all other parameters, there exists a q+2 such that for all q2 < q
+
2 , any

strategy of �rm 2 such that (i) if T (g1; b2) > 0; then � 2 (b2) < T (b1; g2) is strictly
dominated in � (2) ; and (ii) if T (g1; b2) = 0; then � 2 (b2) > 0 is strictly dominated in
� (2) :

Proof. Claim 1 (a) and Claim 2 (a) imply that � 1 (b1) � T (b1; g2) < T (g1; b2) �
� 1 (g1). This means that �rm 2 can learn �rm 1�s signal by staying until � 1 (b1) :
We will now argue that if � 2 (b2) < T (b1; g2) then (� 2; �2) is strictly dominated

by (� 2; �2) such that � 2 (b2) = T (g1; b2) and �2 (b2; t1) = t1 for all t1 � T (b1; g2) : In
words, the strategy (� 2; �2) says that if 1 exits at time t1 � T (b1; g2) ; then b2 believes
that �rm 1�s signal is b1 and exits immediately after �rm 2: If �rm 1 does not exit
by T (b1; g2) ; then b2 believes that �rm 1�s signal is g1: From Claim 2 (b) we already
know that to exit before T (b1; b2) is strictly dominated for b2: We will now establish
that if q2 is small enough, a unilateral exit time � 2 (b2) < T (g1; b2) is also strictly
dominated.
Given � 1 (b1) = t1; b2�s �ow pro�t from the strategy (� 2; �2) when evaluated at

time T � � 1 (b1) is

VT (t1) = �m

Z t1

T

e�r(t�T ) Pr [S0 (t) j b2;S0 (T )] (pt (b2)� p�) dt

+Pr [g1 j b2;S0 (T )]� �m
Z T (g1;b2)

t1

e�r(t�T ) Pr [S0 (t) j g1; b2;S0 (T )] (pt (g1; b2)� p�) dt

where S0 (t) is the event that neither �rm has succeeded until t and 2�s beliefs at time
t < t1 are de�ned by

pt (b2)

1� pt (b2)
= e�2�t

p (b2)

1� p (b2)
If �rm 1 does not exit at time t1; then �rm 2 knows that s1 = g1 and its beliefs at
time t > t1 become

pt (g1; b2)

1� pt (g1; b2)
= e�2�t

p (g1; b2)

1� p (g1; b2)
If �rm 1 exits at time t1; then �rm 2 follows and its subsequent payo¤ is 0:
For any T; �rm 2�s payo¤ VT (t1) is decreasing in t1 and so is minimized at t1 =

T (b1; g2) : This is because b2 learns 1�s signal at � 1 (b1) = t1 and the sooner this
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information arrives, the better it is for �rm 2: Formally, by di¤erentiating VT (t1)
with respect to t1

V 0T (t1) / Pr [S0 (t1) j b2;S0 (T )] (pt1 (b2)� p�)
�Pr [g1 j b2;S0 (T )] Pr [S0 (t1) j g1; b2;S0 (T )] (pt1 (g1; b2)� p�)

Now using the fact that at time t1; the "prior" before the information arrives pt1 (b2)
is the expectation of the posteriors after the information arrives (Bayes plausibility),

V 0T (t1) / Pr [b1 j b2;S0 (T )] Pr [S0 (t) j b1; b2;S0 (T )] (pt1 (b1; b2)� p�) < 0

since t1 > T (b1; b2) :
We now argue that the minimum value V (T (b1; g2)) is positive once q2 is small

enough. To see this, note that while the �rst term of VT (T (b1; g2)) may be nega-
tive, the second is surely positive. As q2 # 1

2
; p (b1; g2) # p (b1; b2) ; or equivalently,

T (b1; g2) # T (b1; b2) ; and since T 2 [T (b1; b2) ; T (b1; g2)] the �rst term approaches
zero while the second is strictly positive when T (g1; b2) > 0. Now de�ne

q+2 = max

�
q2 : min

T�T (b1;g2)
VT (T (b1; g2)) � 0

�
(7)

For any q2 < q+2 ; the payo¤ from (� 2; �2) is greater than the payo¤ from any strategy
such that � 2 (b2) < T (b1; g2) :
If s1 = b1; then �rm 2 is indi¤erent at all � 2 (b2) > T (b1; g2) : But if s1 = g1;

� 2 (b2) = T (g1; b2) is strictly better than � 2 (b2) < T (b1; g2) : Since the latter occurs
with positive probability, (� 2; �2) is strictly better.

(ii) Obvious since in this case p (g1; b2) � p�:

In the rest of the proof, we will assume that q2 < q+2 : Note that q
+
2 depends on

the other parameters, in particular on q1:

IEDS Round 4

Claim 4 Any strategy of �rm 1 such that � 1 (b1) 6= T (b1), is strictly dominated in
� (3).

Proof. We will �rst argue that � 1 (b1) > T (b1) is strictly dominated. From Claim
1 (b) and Claim 3 we know that �rm 2; regardless of its signal, will not be the
�rst to quit before T (b1; g2) : This means that �rm 1 will learn nothing from �rm
2 prior to T (b1; g2) : This implies that if �rm 1 with signal b1 exits at any time
t1 2 (T (b1) ; T (b1; g2)], its �ow payo¤ after T (b1) is negative (recall that T (b1) is the
optimal exit time for �rm 1 with only his own signal b1). If �rm 1 stays until T (b1; g2)
or longer, the best event is that it learns that �rm 2�s signal is g2 at exactly time
T (b1; g2), the earliest time that he could learn anything about �rm 2�s signal. But
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even in this case, it is best to exit immediately after learning �rm 2�s signal. Thus,
even if �rm 1 were to learn that �rm 2�s signal was g2; it cannot make any use of this
information. Thus, staying after T (b1) is strictly dominated for b1:
Clearly there is no reason for b1 to quit before T (b1) :

IEDS Round 5

Claim 5 (a) Any strategy of �rm 2 such that �2 (g2; T (b1)) 6= 2T (b1; g2)� T (b1) is
strictly dominated in � (4) :

Proof. Given all previous rounds, we know that �rm 1 with b1 will exit at T (b1)
and with signal g1 will exit no earlier than T (b1; g2) > T (b1) : Thus, if �rm 2 sees at
time T (b1) that �rm 1 exits, it knows that 1�s signal was b1: If �rm 2�s signal is g2, it
is now strictly dominated to quit at a time other than 2T (b1; g2) � T (b1), the time
when g2�s beliefs will reach p�:

Claim 5 (b) Any strategy of �rm 2 such that �2 (b2; T (b1)) 6= T (b1) is strictly dom-
inated in � (4) :

Proof. Given all previous rounds, we know that �rm 1 with b1 will exit at T (b1) and
with g1 will stay longer. Thus, if �rm 2 sees at time T (b1) that �rm 1 exits, it knows
that 1�s signal was b1: Clearly, given that 2�s own signal is b2; staying any longer is
strictly dominated.

Claim 5 (c) Any strategy of �rm 2 such that � 2 (b2) 6= T (g1; b2) is strictly dominated
in � (4) :

Proof. Given all previous rounds, we know that �rm 1 with b1 will exit at T (b1) and
with g1 will stay longer. Thus, if �rm 2 sees at time T (b1) that �rm 1 did not exit, it
knows that 1�s signal is g1: From Claim 1(a), �rm 1 will stay at least until T (g1; b2) :
For �rm 2 with signal b2 to quit at a time other than T (g1; b2) is strictly dominated.

Claim 5 (d) Any strategy of �rm 2 such that � 2 (g2) < T (g1; g2) is weakly domi-
nated in � (4) :

Proof. Given all previous rounds, we know that �rm 1 with b1 will exit at T (b1)
and with g1 will stay longer. Thus, if �rm 2 sees at time T (b1) that �rm 1 did not
exit, it knows that 1�s signal is g1: If � 1 (g1) � T (g1; g2) ; then � 2 (g2) < T (g1; g2) is
strictly worse than quitting at T (g1; g2) : If � 1 (g1) < T (g1; g2) ; then all quitting times
� 2 (g2) such that � 1 (g1) < � 2 (g2) result in the same payo¤ as quitting at T (g1; g2) : If
� 1 (g1) < T (g1; g2) ; then all quitting times � 2 (g2) such that � 2 (g2) < � 1 (g1) results
in a payo¤ strictly worse than from quitting at T (g1; g2) :

Note that for the same reasons as in Round 1; the strategies eliminated in Claim
5 (d) are also only weakly dominated.
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IEDS Round 6

Claim 6 (a) Any strategy of �rm 1 such that �1 (g1; T (g1; b2)) 6= T (g1; b2) is strictly
dominated in � (5)

Proof. Given all previous rounds, � 2 (b2) = T (g1; b2) < T (g1; g2) � � 2 (g2) (Claim 5
(c) and Claim 5 (d)). So if �rm 2 quits at T (g1; b2) ; �rm 1 knows that 2�s signal is
b2: Then it is dominated for �rm 1 to continue after T (g1; b2).

Claim 6 (b) Any strategy of �rm 1 such that � 1 (g1) 6= T (g1; g2) is strictly domi-
nated in � (5) :

Proof. As in the proof of the previous claim, if �rm 2 does not quit at T (g1; b2) ;
�rm 1 knows that 2�s signal is g2: From Claim 5(d), � 2 (g2) � T (g1; g2) : Thus, it is
dominated for �rm 1 to quit at any other time.

IEDS Round 7

Claim 7 Any strategy of �rm 2 such that � 2 (g2) > T (g1; g2) is strictly dominated in
� (6) :

Proof. If �rm 2 with signal g2 sees that �rm 1 stayed beyond T (b1), it knows that
1�s signal is g1: From Claim 6 (b), thus �rm 1 will quit at T (g1; g2) and so �rm 2
should also quit at that time.

A.2 Step 2

The iterated elimination of dominated strategies, weak and strict, carried out above
leaves a single outcome� the same as that in the upstart equilibrium (� �i ; �

�
i ) : We

now argue that this outcome is the unique Nash equilibrium outcome in �:
Suppose that (e� ; e�) is a (possibly mixed) Nash equilibrium where e� i (si) is a ran-

dom variable on [0;1) and so is e�i (si; tj) : It is clear that there is no point in ran-
domizing once the other player has exited. Thus, we can write (e� ; �) where � is
pure.
We �rst show that if a pure strategy for �rm 2 is only weakly dominated in Round

1 (Claim 1 (b)) it cannot be played with positive probability.

Claim 8 If (e� ; �) is a Nash equilibrium, then Pr [e� 2 (g2) < T (b1; g2)] = 0:
Proof. Suppose to the contrary that Pr [e� 2 (g2) < T (b1; g2)] > 0. We will sub-divide
this event into three cases.

Case 1: Pr [e� 1 (g1) � e� 2 (g2) < T (b1; g2)] > 0:
In this case, with positive probability g1 is the �rst to quit. But for g1, quitting

at any time t1 < T (b1; g2) is strictly worse than quitting at T (b1; g2) in expectation.
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Note that if s2 = g2; then quitting at t1 is strictly worse than quitting at T (b1; g2) :
This is because at any time t < T (b1; g2) < T (g1; b2) ; the belief of g1 is such that
p1t > p

� (using Lemma A.1). On the other hand, if s2 = b2; it is no better.

Case 2: Pr [e� 2 (g2) < e� 1 (g1) < T (b1; g2)] > 0:
In this case, for g2; quitting at any time t2 < T (b1; g2) is strictly worse than

quitting at T (b1; g2) in expectation.

Case 3: Pr [e� 2 (g2) < T (b1; g2) � e� 1 (g1)] > 0:
Again, for g2; quitting at any time t2 < T (b1; g2) is strictly worse than quitting

at T (b1; g2) in expectation.

Thus, we have argued that (e� ; �) is not a Nash equilibrium.
Now we claim that if a pure strategy for �rm 1 is only weakly dominated in Round

1 (Claim 1 (a)) it cannot be played with positive probability either.

Claim 9 If (e� ; �) is a Nash equilibrium, then Pr [e� 1 (g1) < T (g1; b2)] = 0:
Proof. Suppose to the contrary that Pr [e� 1 (g1) < T (g1; b2)] > 0: Again we will
sub-divide this event into three cases.

Case 1: Pr [e� 1 (g1) � T (b1; g2)] > 0:
In this case, with positive probability g1 is the �rst to quit since by Claim 8, g2

never quits before T (b1; g2) : But for g1 to quit at a time t1 < T (g1; b2) is strictly
worse than quitting at T (g1; b2) in expectation. This is because if s2 = g2; this is
strictly worse because Pr [e� 2 (g2) � T (b1; g2)] = 1 (Claim 8) and if s2 = b2; it is no
better. Thus, Pr [e� 1 (g1) � T (b1; g2)] = 0:
Case 2: Pr [e� 2 (g2) < e� 1 (g1) and T (b1; g2) < e� 1 (g1) < T (g1; b2)] > 0:
First, note that Pr [e� 1 (b1) > T (b1; g2)] = 0 as well. This is because from Claim

8, Pr [e� 2 (g2) � T (b1; g2)] = 1 and so when the signals are (b1; g2) ; for b1 to stay
beyond T (b1; g2) is strictly worse than dropping out at T (b1; g2) : When the signals
are (b1; b2) ; either dropping out at some t1 > T (b1; g2) is suboptimal because t2 � t1
or it does not matter because t2 < t1: Thus to drop out at any t1 > T (b1; g2) is
suboptimal for b1:
Now since Pr [e� 1 (b1) > T (b1; g2)] = 0 and Pr [e� 1 (g1) � T (b1; g2)] = 0 (Case 1),

this means that if �rm 1 does not quit by time T (b1; g2) ; then �rm 2 knows that
s1 = g1: Then it is suboptimal for �rm 2 with signal g2 to drop out at t2 < T (g1; b2) <
T (g1; g2) : When the signals are (b1; g2) ; t2 � T (b1; g2) with probability 1 and t1 �
T (b1; g2) with probability 0: Thus, �rm 1 is the �rst to drop out and thus for g2 to
quit at any t2 � T (b1; g2) is irrelevant. Thus, overall �rm 2�s strategy is not a best
response.

Case 3: Pr [e� 2 (g2) � e� 1 (g1) and T (b1; g2) < e� 1 (g1) < T (g1; b2)] > 0:
In this case, for g1 to quit before T (g1; b2) is strictly worse than quitting at

T (g1; b2) in expectation. This is because if s2 = g2; it is strictly worse and if s2 = b2
it is no better.
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So far we have argued that if (e� ; �) is a (possibly mixed) Nash equilibrium then
almost every pure action � in its support was not weakly dominated in Round 1 of
the IEDS procedure. We complete the proof by showing that the same is true in
Round 5.

Claim 10 If (e� ; �) is a Nash equilibrium, then Pr [e� 2 (g2) < T (g1; g2)] = 0:
Proof. Suppose to the contrary that Pr [e� 2 (g2) < T (g1; g2)] > 0: Again, we will
sub-divide this event into two cases.

Case 1: Pr [T (g1; b2) � e� 2 (g2) � e� 1 (g1) < T (g1; g2)] > 0:
From Claim 9, Pr [e� 1 (g1) � T (g1; b2)] = 1 and from Claim 4 Pr [e� 1 (b1) = T (b1)] =

1: This means that if �rm 1 is active at any time t > T (b1) ; then with probability 1,
�rm 2 believes that s1 = g1: Thus, it is not optimal for g2 to quit before T (g1; g2) :

Case 2: Pr [T (g1; b2) � e� 1 (g1) < e� 2 (g2) < T (g1; g2)] > 0:
In this case, since Claim 8 implies Pr [e� 2 (g2) � T (b1; g2)] = 1 and Claim 5 (c)

implies Pr [e� 2 (b2) = T (g1; b2)] = 1; at any time t > T (g1; b2) �rm 1 will believe with
probability 1 that s2 = g2: Thus if Pr [e� 1 (g1) > T (g1; b2)] > 0; then it is suboptimal
for g1 to quit before T (g1; g2) : If Pr [e� 1 (g1) = T (g1; b2)] = 0; then it is better to stay
a little longer and learn whether or not s2 = g2:

The last claim shows that if (e� ; �) is a Nash equilibrium, the probability that a
pure strategy in the support of e� 2 (g2) is eliminated in Round 5 of the IEDS procedure
is zero.
We have thus argued that no Nash equilibrium can have an outcome di¤erent

from the one in (� �; ��) :

This completes the proof of Proposition 2.

B Appendix: Value of information

In this appendix, we formally establish that each �rm�s expected payo¤ in the upstart
equilibrium is strictly increasing in the quality of its own information (Proposition
4). In other words, for each �rm the value of its private information is positive. In
fact, it turns out that each �rm�s payo¤ is also increasing in the quality of its rival�s
information.
Firm 1 equilibrium expected payo¤ can be written as

��1 = Pr [g1; g2]� v (p (g1; g2)) + Pr [g1; b2]� v (p (g1; b2))
+Pr [b1]� v (p (b1))
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where v (p0) is the �ow pro�t of a �rm when both �rms hold a common belief p0 at
time 0 and both are in the race until this belief reaches p�: For the usual reasons,
v is an increasing and convex function and is strictly increasing and strictly convex
when p0 > p� (see the online appendix for a proof of these properties). This follows
from the fact that, in the upstart equilibrium, when the signals are (g1; g2) both �rms
exit at time T (g1; g2) and this is exactly the optimal stopping time given an initial
common belief p0 = p (g1; g2) : The same is true when the signals are (g1; b2): When
1�s signal is b1; it exits at T (b1) and �rm 2 does not exit before this time. Again,
T (b1) is the optimal stopping given an initial common belief p0 = p (b1) :
For a �xed q1; de�ne the probability distribution function F : [0; 1]! [0; 1]

F (x) =

8>><>>:
0 0 � x < p (b1)

Pr [b1] p (b1) � x < p (g1; b2)
Pr [b1] + Pr [g1; b2] p (g1; b2) � x < p (g1; g2)

1 p (g1; g2) � x < 1

and similarly, for bq1 > q1 de�ne bF : [0; 1] ! [0; 1] analogously. It may be readily
con�rmed that bF is a mean-preserving spread of F: Since v is a convex function, it
follows that �rm 1�s equilibrium payo¤ when his signal quality is bq1; b��1 > ��1:
Firm 2�s expected payo¤ can be written as

��2 = Pr [g1; g2]� v (p (g1; g2)) + Pr [g1; b2]� v (p (g1; b2))
+Pr [b1]� v (p (b1)) + e�rT (b1) Pr [b1; g2]� u

�
pT (b1) (b1; g2)

�
where v (p0) is de�ned as above and u (p0) is analogously de�ned as the �ow pro�t of
a �rm when with belief p0 at time 0 and it is the only �rm present. The �rst three
terms are the same as in ��1: The only additional term occurs when the signals are
(b1; g2) where �rm 2 now stays longer than �rm 1: In this case, �rm 2�s belief at time
T (b1) is pT (b1) (b1; g2) and the resulting payo¤ is discounted back to time 0:
To establish that ��2 is an increasing function of q2; we will show that the sum

of the �rst two terms is increasing in q2 and the last term is increasing in q2 as well.
The third term does not depend on q2:

Lemma B.1 Pr [g1; g2]� v (p (g1; g2)) + Pr [g1; b2]� v (p (g1; b2)) is increasing in q2:

Proof. Since Pr [g1] is independent of q2; it is su¢ cient to show that

Pr [g1; g2]

Pr [g1]
v (p (g1; g2)) +

Pr [g1; b2]

Pr [g1]
v (p (g1; b2))

is increasing in q2:
Now if bq2 > q2; then

bp (g1; b2) < p (g1; b2) < p (g1; g2) < bp (g1; g2)
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where bp (g1; �) denotes the posterior derived from bq2: Moreover, the mean of p (g1; �)
is p (g1) and this is the same as the mean of bp (g1; �) (since the expectation of the
posteriors is the prior). Thus, the distribution of bp (g1; �) is a mean-preserving spread
of the distribution of p (g1; �).
Since v is a convex function, the result now follows.

Corollary 1 Suppose q1 > q2. Then in the upstart equilibrium, �rm 1�s payo¤ is
increasing in q2:

Lemma B.2 Pr [b1; g2]� u
�
pT (b1) (b1; g2)

�
is increasing in q2:

Proof.

@
�
Pr [b1; g2]� u

�
pT (b1) (b1; g2)

��
@q2

=
@ Pr [b1; g2]

@q2
u
�
pT (b1) (b1; g2)

�
+ Pr [b1; g2]

@pT (b1) (b1; g2)

@q2
u0
�
pT (b1) (b1; g2)

�
>
@ Pr [b1; g2]

@q2
u
�
pT (b1) (b1; g2)

�
+ Pr [b1; g2]

@pT (b1) (b1; g2)

@q2

u
�
pT (b1) (b1; g2)

�
pT (b1) (b1; g2)

since u is an increasing and convex function that is non-negative and strictly positive
for p > p� and u (0) = 0 (see the online Appendix for a detailed proof). Thus,
u0 (p) > 1

p
u (p). The sign of the right-hand side of the inequality is the same as the

sign of

@ Pr [b1; g2]

@q2
pT (b1) (b1; g2) + Pr [b1; g2]

@pT (b1) (b1; g2)

@q2

=
@

@q2

�
Pr [b1; g2]� pT (b1) (b1; g2)

�
=

@

@q2

�
Pr [b1; g2]�

e�2�T (b1)� (1� q1) q2
e�2�T (b1)� (1� q1) q2 + (1� �) q1 (1� q2)

�
Dividing the numerator and denominator of the second term by Pr [b1; g2] =

� (1� q1) q2 + (1� �) q1 (1� q2) ; we obtain

@

@q2

�
Pr [b1; g2]� pT (b1) (b1; g2)

�
=

@

@q2

�
Pr [b1; g2]�

e�2�T (b1)p (b1; g2)

e�2�T (b1)p (b1; g2) + 1� p (b1; g2)

�
=

@

@q2

�
e�2�T (b1) Pr [G; b1; g2]

1� (1� e�2�T (b1)) p (b1; g2)

�
and since both Pr [G; b1; g2] and p (b1; g2) are increasing in q2; we have that Pr [b1; g2]�
pT (b1) (b1; g2) is increasing in q2 as well.

This completes the proof of Proposition 4.
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C Appendix: Planner�s solution

In this appendix we formally show that it is optimal for a planner with initial belief p0
to ensure that both �rms are active until T (p0) : This is the key step in establishing
Proposition 6.
The per-�rm expected �ow pro�t from switching from two �rms to one �rm at

time s is

w (s) = �m

Z s

0

e�rt
�
e�2�tp0 + 1� p0

�
(pt � p�) dt

+
1

2
�m

Z 2T�s

s

e�rt
�
e��(s+t)p0 + 1� p0

�
(pt � p�) dt

where the belief pt at time t that the state is G is de�ned by

pt
1� pt

=

8<:
e�2�t p0

1�p0 if t � s

e��(s+t) p0
1�p0 if t � s

(8)

re�ecting the fact that both �rms are active until time s and after that only one of
the two �rms is active. Note that e�2�tp0 + 1 � p0 is the probability that neither
�rm is successful until time t: Note also that p2T�s = p� and that the coe¢ cient 1

2

in the second term appears because w represents per-�rm �ow pro�ts and the pro�t
of the �rm that exits is 0: After substituting for pt from (8), w (s) can be explicitly
calculated to be

w (s) =
�mp0 (1� p�)

2�+ r

�
(2�+ r) e�2T�

�
e�rs � 1

�
� r

�
e�(2�+r)s � 1

��
+
�mp0 (1� p�)
2 (�+ r)

�
�e�2�T

�
e�r(2T�s) � e�rs

�
� re�rs

�
e�2�T � e�2�s

��
Di¤erentiating with respect to s then yields

w0 (s) = �mp0 (1� p�)�
rers

�
re�2(�+r)s + �e�2(�+r)T � (�+ r) e�2(�T+rs)

�
2 (�+ r)

and note that w0 (T ) = 0: Di¤erentiating again we obtain

w00 (s)

= �mp0 (1� p�)�
r2ers

�
�e�2(�+r)T + (�+ r) e�2(�T+rs) � (2�+ r) e�2(�+r)s

�
2 (�+ r)

< �mp0 (1� p�)�
r2ers

�
�e�2(�+r)s + (�+ r) e�2(�s+rs) � (2�+ r) e�2(�+r)s

�
2 (�+ r)

= 0
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whenever s < T: Thus, w is a concave function and w0 (T ) = 0: As a result, the joint
pro�ts of the �rms are maximized when s = T; that is, when both �rms are active
until time T: Thus, we obtain that the joint pro�t-maximizing plan with any initial
belief p0 is for both �rms to invest in R&D as long as it is pro�table, that is, as long
as the updated belief pt > p� or alternatively, until T (p0) :
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