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Entry Deterrence

An Entry Deterrence Game

I 2 periods, 2 players: Incumbent (I ) and Rival (R).
I At t = 1, I chooses Fight (F ) or Accommodate (A).
I Between dates 1 and 2, R can stay (S) or exit (E ).
I If S , at t = 2, I again chooses F or A.
I I enjoys monopoly profits (πm) after R exits, duopoly profits
(πd ) after A and payoff from a price war (πw ) after F .

πw < 0 < πd < πm

I R gets 0 after exit, πd after A and πw after F .
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Entry Deterrence

Incomplete Information

I Incumbent is either a rational type (prob 1− p) or a crazy
type (prob p).

I Rational type always plays best response, crazy type plays F
in both periods.

I Two approaches: crazy type can be either “behavioral” or a
rational player with a different payoff function.

I Rational I’s strategies: {FF ,FA,AA,AF}. Only FA or AA can
be best response.

I R’s beliefs: µ(crazy|A) = 0 and µ(crazy|F ) = µ ∈ [0, 1].
I R’s strategies: {EE ,ES , SE , SS}. First information set
corresponds to F .
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Entry Deterrence

Separating Equilibrium

I Rational I’s strategy: AA.
I Then µ = 1 and R plays ES .
I I is playing best response if

2πd ≥ πm + πw (1)

I Here fighting significantly enhances reputation but there is no
reputation building (by rational incumbents).
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Entry Deterrence

Pooling Equilibrium

I Rational I’s strategy: FA.
I I’s strategy is best response only if R plays ES .
I Beliefs: µ = p. Then I is playing best response after F if

pπw + (1− p)πd ≤ 0 (2)

I Here fighting preserves reputation, doesn’t improve it.
I Rational incumbents pay the cost to preserve reputation.
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Entry Deterrence

Semi-Separating or Hybrid Equilibrium

I Suppose (1) and (2) are both violated.
I Alternative PBE: rational I plays F with prob α and R plays E
with prob β after F .

I I’s indifference implies:

2πd = πw + βπm + (1− β)πd

or, β =
πd − πw
πm − πd
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Entry Deterrence

Semi-Separating or Hybrid Equilibrium
I R’s indifference condition is

0 = µπd + (1− µ)πw

or, µ =
−πw

πd − πw

I Using Bayes’Rule:

µ =
p

p + (1− p)α
I Combining:

α =

(
p

1− p

)(
1− µ

µ

)
= − πd

πw

(
p

1− p

)
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Entry Deterrence

Remarks on Hybrid Equilibrium
I Here reputation is elastic both ways: improves after F and
deteriorates after A.

I Rational incumbents may choose to invest in reputation.
I The higher the initial reputation (p), the more likely the
incumbent is to defend it (α).

I Higher the initial reputation, the less it improves after F .
I “Soft bigotry of low expectations.” Initial conditions matter.

I Long horizon: Consider the T stage version (one long run
incumbent against a series of short run rivals). If T is large
enough, even the rational incumbent fights with probability 1
in all but the last few periods.
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Reputational Herding

Reputational Herding (Scharfstein and Stein 1990)

I Variation on the theme of informational cascades.
I Agents have no direct payoff from the decision– they are
investing other people’s money.

I Agents want to enhance their reputation for expertise.
I A critical assumption:

I signals of good experts are correlated (great minds think alike)
I signals of bad experts are uncorrelated (fools often differ)

I Reputation is enhanced by: (a) taking the right decision (b)
agreeing with other experts.

I (b) may be so strong that all experts mimic the choices of
their predecessors.
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Reputational Herding

The Model

I Two fund managers: A and B.
I Each manager chooses to invest (I ) or not (N).
I Return on investment is either high (xH > 0) or low (xL < 0),
with equal likelihood.

I Manager A chooses first, then manager B.
I Each manager receives a private signal, which is either good
(sG ) or bad (sB ).

I The second manager can observe the first manager’s action
but not his signal.
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Reputational Herding

Information
I Each manager is either smart (prob θ) or dumb (prob 1− θ).
I Managers do not know the quality of their own signals.
I Smart manager’s signal (informative but noisy):

sG sB
xH p 1− p
xL 1− p p

I Dumb manager’s signal (pure noise):

sG sB
xH 1

2
1
2

xL 1
2

1
2

I Smart signals perfectly correlated, dumb signals independent.
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Reputational Herding

Reputation

I Pr[sG |smart] = Pr[sG |dumb], hence each signal in itself
conveys no information about expertise.

I Two signals together convey some information about expertise
(matched signals good news).

I Market observes each manager’s action but not signal.
I Also learns the state of the world (xH or xL) eventually.
I Revises the probability that an expert is smart to some θ̂.
I Experts are interested in maximizing expected value of
reputation (θ̂) because their future salaries are linked to it.
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Reputational Herding

Benchmark 1A: Single Investor, One Signal

I Suppose there is a single investor who invests his own money,
i.e., cares about returns, not reputation.

I Conditional probabilities after each signal:

µG = Pr[xH |sG ] = θp + (1− θ).
1
2

µB = Pr[xH |sB ] = θ(1− p) + (1− θ).
1
2

I Assume:

µBxH + (1− µB ) xL < 0 < µG xH + (1− µG ) xL

I Optimal decision is dependent on the signal.
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Reputational Herding

Benchmark 1B: Single Investor, Two Signals

I Suppose the investor knows two signals.
I Given previous assumption, the optimal decision rule (which
maximizes returns) is:

I if (sG , sG ), choose I .
I if (sB , sB ), choose N.
I if (sG , sB ) or (sB , sG ), depends.

I If the signals are opposite they wash out, i.e.,
Pr[xH |sG , sB ] = 1

2 .
I Then I if xH + xL > 0, and N if xH + xL < 0.
I It is not optimal to simply follow the first signal.
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Reputational Herding

Benchmark 2: Single Manager
I Suppose there is a single manager who cares about
reputation, not returns.

I If the expert is expected to invest under sG and not invest
under sB , will he behave accordingly (i.e. reveal his signal)?

I The manager’s reputation goes up when he is correct and
goes down when he is wrong:

θ̂ (sG , xH ) = θ̂ (sB , xL) > θ > θ̂ (sG , xL) = θ̂ (sB , xH )

I The manager thinks the state is more likely to be what his
signal indicates:

Pr[xH |sG ] = Pr[xL|sB ] >
1
2
> Pr[xH |sB ] = Pr[xL|sG ]

I The expected reputation is greater if he reveals his signal than
if he misreports it.
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Reputational Herding

Equilibrium

Theorem
In equilibrium, manager A always invests if he gets sG and does
not invest if he gets sB .

I We will show that manager B always mimics manager A,
regardless of his own signal.

I Then, A’s reputation is affected only by his own actions.
I A single manager will always reveal his signal (previous slide).
I There is also a “perverse” equilibrium where he reveals his
signal by taking the wrong action. Rule it out (suppose he has
a small stake in returns).
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Reputational Herding

Equilibrium

Theorem
There is no equilibrium in which manager B always reveals his
signal.

I Suppose there is a revealing equilibrium.
I Suppose (w.l.o.g) A’s signal is revealed as sB , but manager
B’s signal is sG .

I We will show that manager B will misreport his signal as sB .
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Reputational Herding

Outline of Proof
I Two conflicting signals cancel each other out (nobody knows
who is the dumb one!)

Pr[xH |sB , sG ] =
1
2

I Incentive constraint for truthfully reporting sG :

1
2

θ̂ (sB , sG , xH ) +
1
2

θ̂ (sB , sG , xL)

≥ 1
2

θ̂ (sB , sB , xH ) +
1
2

θ̂ (sB , sB , xL)

I In words:

expected reputation (truth-telling) ≥ expected reputation (lying)
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Reputational Herding

Outline of Proof
I However

θ̂ (sB , sG , xH )︸ ︷︷ ︸ < θ̂ (sB , sB , xL)︸ ︷︷ ︸
agrees with state alone < agrees with both

θ̂ (sB , sG , xL)︸ ︷︷ ︸ < θ̂ (sB , sB , xH )︸ ︷︷ ︸
disagrees with both < disagrees with state alone

I When signals conflict, either prediction has the same chance
of being correct.

I Ceteris paribus, agreeing with other expert will increase the
likelihood of being perceived smart.

I It is better to be wrong with others than to be wrong alone!
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Reputational Herding

Equilibrium
Theorem
There is an equilibrium in which manager B always does the same
thing as manager A, regardless of his own signal..

I “Reasonable”off-the-equilibrium-path beliefs: if B disagrees
with A, then his signal is sG if he chose I and sB if he chose N.

I Incentive constraint:

θ ≥ 1
2

θ̂ (sB , sG , xH ) +
1
2

θ̂ (sB , sG , xL)

or, θ − θ̂ (sB , sG , xL) ≤ θ̂ (sB , sG , xH )− θ

I Intuition: reputation loss from being wrong alone is greater
than reputation gain from being right alone.
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Political Correctness

Political Correctness (Morris 2001)
I Listeners are often unsure about the bias of speakers (are they
sexist/racist/casteist)?

I What is said reveals something about both the speaker’s
information as well as his motives.

I Message affects reputation and vice versa.
I Political correctness: even unbiased speakers lie! They lie in a
direction opposite to the suspected bias.

I In the extreme, political correctness leads to babbling:
everyone says the “safe” thing.

I PC may be socially ineffi cient due to informational loss.
Important policy issues are not discussed frankly.

I Possibility of multiple equilibria: different speech cultures.
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Political Correctness

The Model
I Two periods: t = 1, 2. State-of-the-world at date t:

ωt ∈ {0, 1}. Equi-probable and time-independent.
I Two players: decision maker (D) and advisor (A).
I D chooses action at ∈ R each period. D’s payoff:

UD = −x1(a1 −ω1)
2 − x2(a2 −ω2)

2

I A can be good (prob λ1) or bad (prob 1− λ1).
I Good advisors have the same preference as D, bad advisors
always want higher action:

UbA = y1a1 + y2a2

I x2
x1
and y2

y1
represent relative importance of the future.
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Political Correctness

The Model

I The advisor gets an independent noisy signal of the state each
period: st ∈ {0, 1}.

I Accuracy of the signal is γ ∈
( 1
2 , 1
)
:

s = 0 s = 1
ω = 0 γ 1− γ
ω = 1 1− γ γ

I Each period, A sends message mt ∈ {0, 1}.
I After date 1, D learns ω1 and updates his belief to λ2.
I λ2 (λ1,m1,ω1) is the advisor’s new reputation.
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Political Correctness

Full Information Benchmark

I If A was known to be good, messages would be truthful and
credible.

I Optimal actions equal to expected value of the state:

a∗(0) = Pr [ω = 1|s = 0] = 1− γ

a∗(1) = Pr [ω = 1|s = 1] = γ

I Good advisor wants exactly these actions.
I Bad advisor always wants a = 1, regardless of state.
I Without reputational concerns, good advisor reports true value
of signal. Bad advisor lies and reports 1 even if signal is 0.
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Political Correctness

Last Period
I Message strategies

s2 = 0 s2 = 1
Good 0 1
Bad 1 1

I Optimal actions, a2 (m2;λ2):

a2(0;λ2) = 1− γ

a2(1;λ2) = Pr [ω2 = 1|m2 = 1]

=
1− λ2(1− γ)

2− λ2

I a2(1;λ2) ↑ as λ2 ↑ and → γ as λ2 → 1.
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Political Correctness

Value of Reputation

I Let vG (λ2) and vB (λ2) denote expected payoff to good and
bad advisor in the last period.

I The bad advisor always reports m2 = 0:

vB (λ2) = y2a2(1;λ2) ↑ in λ2

I The good advisor always reports truthfully:

vG (λ2) = −x2.
1
2

[
E
(
(a2 −ω2)

2 |s2 = 0
)
+ E

(
(a2 −ω2)

2 |s2 = 1
)]

I First term is minimized at a2 = 1− γ, second term at a2 = γ.
I a2 (1;λ2) ↑ towards γ as λ2 ↑. Both types value reputation.
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Political Correctness

First Period
I Assume equilibrium with no political correctness, i.e., good A
reports truthfully.

I Bad A must falsely report the truth sometimes. Suppose not:

s1 = 0 s1 = 1
Good 0 1
Bad 0 1

I Then λ2 (λ1,m1,ω1) = λ1 for any m1 and ω1. Message does
not affect reputation.

I Also, message is believed completely:
a1(0) = 1− γ < γ = a1(1). Bad advisor will lie and always
report 1.
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Political Correctness

First Period
I Assume good advisor always reports truthfully; bad advisor
sometimes lies.

s1 = 0 s1 = 1
Good 0 1
Bad 0 (prob 1− υ) 1

1 (prob υ)

I Then m1 = 0 ⇒ s1 = 0, but m1 = 1 does not ⇒ s1 = 1.
I Equilibrium actions a1 (m1):

a1 (0) = 1− γ

a1 (1) ∈
(
1
2
,γ

)
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Political Correctness

Reputation

I Reputation is enhanced if message is
I (i) factually correct
I (ii) politically correct.

I Ceteris paribus, initial reputation positively affects final
reputation.

I Comparison for λ2 (λ1,m1,ω1):

λ2 (λ1, 0, 1) = λ2 (λ1, 0, 0) > λ1 > λ2 (λ1, 1, 1) > λ2 (λ1, 1, 0)

I Exact expressions involve υ and can be calculated using
Bayes’Rule.
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Political Correctness

Reputation Rankings: Intuition
I Politically correct message (m1 = 0) enhances reputation
regardless of factual correctness. Reason:

I the good type sends m1 = 0 more often than the bad type.
I m1 = 0, ω1 = 1 is always an honest mistake.

I Politically incorrect message (m1 = 1) harms reputation even
when factually correct!

I the bad type sends m1 = 1 more often than the good type.
I m1 = 1, ω1 = 1 is sometimes dishonest yet accidental
accuracy.

I m1 = 1 causes further damage to reputation when factually
incorrect.

I m1 = 1, ω1 = 0 is sometimes a deliberate mistake.
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Political Correctness

First Period Equilibrium
I Condition 1: when s1 = 0, the bad advisor must be
indifferent between truth-telling and lying:

y1a1 (0) + E [vB (λ2) |0, 0] = y1a1 (1) + E [vB (λ2) |1, 0]

y1 [a1 (1)− a1 (0)]︸ ︷︷ ︸ = E [vB (λ2) |0, 0]− E [vB (λ2) |1, 0]︸ ︷︷ ︸
gain from lying = expected reputational loss

I When s1 = 1, the bad advisor strictly prefers to tell the truth
(implication of above).

I When s1 = 0, the good advisor always wants to tell the truth
(better outcome as well as better reputation).

I Condition 2: the good advisor must prefer to tell the truth
when s1 = 1 (algebra ommitted).
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Political Correctness

Informative Equilibria: General Properties

I Good advisor sends m1 = 0 whenever s1 = 0. He announces
m1 = 1 with (weakly) positive probability if s1 = 1.

I When s1 = 0, both current and reputational payoffs are higher
for m1 = 0.

I Bad advisor sends m1 = 1 more often than the good advisor.
I Otherwise there would be no reputational cost to sending
m1 = 1.

I There is a strict reputational incentive to be politically correct:

λ2 (λ1, 0, 1) = λ2 (λ1, 0, 0) > λ1 > λ2 (λ1, 1, 1) > λ2 (λ1, 1, 0)

I Reasons as before.
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Political Correctness

Extreme Political Correctness
I If x2x1 is high enough, the only equilibrium is babbling.
I One way to depict the strategies:

s1 = 0 s1 = 1
Good 0 0
Bad 0 0

I Both type of advisors say the “safe” thing so as not to
damage their reputation and influence in the future.

I Reason: the bad advisor’s indifference condition pins down
reputational gain from m1 = 0. Good advisor will want to
capture this if x2 is high enough.

I Under PC, nothing is learnt about the state or the speaker!
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Political Correctness

Welfare
I Benchmark: a model where D in the 2nd period does not
know what happened in the 1st period (no reputational
incentives).

I Without reputation, strategies are in both periods are as in
last period of the game with reputation.

I Reputation creates 3 effects:
1. Discipline effect: bad advisor tells the truth more often
(announce m1 = 0 when s1 = 0). (+)

2. Sorting effect: decision maker learns something about the
speaker and his trustworthiness. (+)

3. Political correctness effect: even the good advisor starts lying
sometimes (send m1 = 0 when s1 = 1). (-)

I When we have an extreme PC (babbling) equilibrium, 3
dominates 1 + 2.
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Taste Based Discrimination

What’s In A Name?
I Bertrand and Mullainathan (AER, 2004): RCT for testing
discrimination in job applications.

I Fictitious CVs randomly matched with white (Emily, Greg)
and black (Lakisha, Jamal) sounding names.

I 5000 resumes submitted in response to 13000 employment ads
in Boston and Chicago.

I Call back rates: whites = 9.65%, blacks = 6.45%. Whites
have 50% higher call back.

I As resume quality improves, response rate goes up faster for
whites than blacks.

I Blind auditions improve the chances of women violinists
significantly (Goldin and Rouse, AER 2000).
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Taste Based Discrimination

Other Examples of “Discrimination”

I Insurance premiums: young drivers (under 25) and older
health insurees (over 65) face higher rates.

I Airport screening: Middle Eastern males more likely to be
terrorists than Swiss nuns.

I Residential choice and segregation: racial composition of a
neighbourhood is a predictor of crime. Avoid the Bronx.

I Credit: 97% of Grameen bank loans are given to women.
I Racial profiling: Search rates from Knowles, Persico and
Todd’s (JPE 2001) data on 1,590 stop-and-search operations
by Maryland police, 1995 - 99:

I Blacks = 63%, whites = 29%.
I Men = 93%, women = 7%.
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Taste Based Discrimination

Three Notions of Discrimination

I Incidental discrimination: groups are not treated differently,
but there is differential impact because groups differ
statistically in behaviour (prison population disproportionately
male because lawbreakers are disproportionately male).

I Statistical discrimination: groups are treated differently, but
only insofar as group affi liation is a statistical predictor of
behaviour (young people drive rash, on average).

I Taste based discrimination: groups are treated differently
because doing so for its own sake generates utility (racial or
caste-based segregation). Prejudice, pure and simple.

How do we empirically separate these strands?
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Taste Based Discrimination

Discrimination in Monitoring

I Crime as a rational choice: criminals commit an illegal act
after weighing benefits against expected punishment cost
(Becker, 1968).

I Two races, r = A,W . Observationally distinct to the police.
I Observable non-racial characteristic c follows distribution
nr (c), with totals

Nr =
∫
nr (c)dc

I Distribution of x , i.e. legal income opportunities: Fr (x ; c).
I Benefit of carrying drugs = B, penalty if caught = P.
I Police have enough resources to search only S people.
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Taste Based Discrimination

The Game and Equilibrium
I Individual decision: carry drugs or enter a legal profession?
I Police simultaneously choose σr (c) – what proportion of
group (r , c) to search, subject to the budget constraint

W

∑
r=A

∫
nr (c)σr (c)dc = S

I Police objective function:

U =
W

∑
r=A

∫
nr (c)σr (c) [θr (c) + ur ] dc

where ur is the intrinsic utility/disutility of searching race r ,
and θr (c) is the “hit rate”among group (r , c).
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Taste Based Discrimination

The Testable Implication
I Interior equilibrium: police must be indifferent across groups,
i.e. θr (c) + ur is a constant.

I Expected payoff from drug peddling:

q(σr (c)) = (1− σr (c))B − σr (c)P

I Those whose legal incomes are less, choose to commit crime:

θr (c) = Fr (q(σr (c)))

I Equality is preserved after integrating over non-racial
characteristics. Let θr =

∫
θr (c)nr (c)dc . Then

θA + uA = θW + uW
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Taste Based Discrimination

Testable Implication

I If police are unprejudiced (uA = uW ), hit rates will be
equalized across groups, even if search rates are very
different.

I If police are prejudiced against blacks (uA > uW ), equilibrium
hit rates will be lower among blacks.

I The general idea: compensating differentials.
I Onerous jobs pay more, attractive cities/neighbourhoods have
higher rents.

I Does not require the econometrician to know or control for all
the variables that police condition their decisions on.
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Taste Based Discrimination

Highway Search Data: Hit Rates
I Test of equality of means (Pearson’s chi-squared):

R

∑
r=1

(p̂r − p̂)2

p̂r
∼ χ2(R − 1)

I Observed hit rates across racial and gender groups

Black White Hispanic All Races
Both sexes .34 .32 .11* .30
Male .34 .33 .11 .32
Female .44* .22* - .36

I Null hypothesis of equality is not rejected when only whites
and blacks are used. Rejected when Hispanics are added.

I Evidence of taste based discrimination against Hispanics and
white females, but not males or blacks.
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Taste Based Discrimination

Effi ciency
Theorem
If uA = uW and FA = FW = F is concave, the equilibrium
allocation maximizes rather than minimizes aggregrate crime rate.

I Let NA = NW = N and σ = S
N . Budget constraint:

1
2
[σA + σW ] = σ

I Aggregrate crime rate:

FA(q(σA)) + FW (q(2σ− σA))

I First-order condition holds at fA = fW (q′(.) is constant)):

fA(q(σA)) = fW (q(2σ− σA))

I Since the objective function is concave, this is a maximum!
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Taste Based Discrimination

Equilibrium, Fairness and Effi ciency

I In general, they are described by three different conditions:
I Equilibrium: FA = FW , i.e. crime rates are equal.
I Fairness: σA = σW , i.e. search rates are equal.
I Effi ciency: fA = fW , i.e. response elasticities are equal.

I Mandatory quotas (e.g. σA = σW ) to improve fairness may
improve effi ciency or worsen it.

I Intuition: there is a conflict between two different objectives:
I discouraging crime (deterrence).
I catching as many criminals as possible (retribution).

I Dynamic inconsistency and problem of commitment.
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Taste Based Discrimination

An Example

I Extreme case: FW (q(2σ)) = 1, i.e., W s are completely
unresponsive to higher scrutiny (zero response elasticity).

I Effi cient allocation: σW = 0 and σA = 2σ.
I Equilibrium allocation is fairer but less effi cient than this
benchmark.
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Statistical Discrimination

Statistical Discrimination
I Skills a function of both innate ability and effort.
I Noisy measurement of skill ⇒ priors will affect posteriors.
I Positive feedback loop between employer perceptions and
worker effort:

I if employers hold optmistic beliefs, workers may have a strong
incentive to become skilled.

I if employers hold pessimistic beliefs, workers may have a weak
incentive to become skilled.

I Multiple equilibria are possible for some parameters.
I Different groups (e.g. blacks and whites) may get locked into
different equilibria.

I Affi rmative may improve or worsen stereotypes (beliefs about
skill distribution in target population).
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Statistical Discrimination

The Coate-Loury model
I Two races: W (proportion λ) and B.
I Two kinds of tasks: unskilled (0) and skilled (1).
I Two worker types: qualified (q) and unqualified (u).
I Every worker (either race) could become qualified at a cost c
which is private information. Within each group, c ∼ U [0, 1].

I Payoffs to employers and workers:

Skilled (1) Unskilled (0)
Qualified (q) xq ,w 0, 0
Unqualified (u) −xu ,w 0, 0

I Noisy test of qualification:

Pass Unclear Fail
Qualified (q) 1− pq pq 0
Unqualified (u) 0 pu 1− pu
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Statistical Discrimination

Employer and Worker Best Response
I Employers: Pass → 1, Fail → 0, Unclear → ?
I Let prior = π. Then posterior

σ = Pr(q|Unclear) = πpq
πpq + (1− π)pu

I Assigning skilled task after unclear test result is optimum iff

σxq + (1− σ)xu ≥ 0

π ≥ puxu
puxu + pqxq

= π̂

I Workers invest in qualification iff cost below a cutoff:

φ(π) = c = (1− pu)w if π ≥ π̂

= (1− pq)w if π < π̂
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Multiple Equilibria
I Equilibrium with liberal beliefs: suppose π ≥ π̂ in
equilibrium ⇒ unclear test result leads to skilled task.
Condition:

πl = φ(πl ) = (1− pu)w ≥ π̂

I Equilibrium with conservative beliefs: suppose π < π̂ in
equilibrium ⇒ unclear test result leads to unskilled task.
Condition:

πc = φ(πc ) = (1− pq)w < π̂

I Multiple equilibria exist if

πc < π̂ ≤ πl

or (1− pq)w <
puxu

puxu + pqxq
≤ (1− pu)w
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Numerical Example
I Stability: suppose employer beliefs evolve the following way:

πt+1 = φ(πt )

The both equilibria are locally stable.
I Payoffs to employers and workers:

Skilled Unskilled
Qualified 1, 1 0, 0
Unqualified −1, 1 0, 0

I Noisy test of qualification:
Pass Unclear Fail

Qualified 1
4

3
4 0

Unqualified 0 1
2

1
2
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Employer’s Hiring Strategy

I Employers: pass → manager, fail → clerk, unclear → ?
I Let fraction of qualified workers = π. After unclear test result

σ = Pr(s |Unclear) = π. 34
π. 34 + (1− π). 12

=
3π

2+ π

I Assigning as manager after unclear test result is optimum iff

σ.1+ (1− σ)(−1) ≥ 0⇒ σ ≥ 1
2

or π ≥ 2
5
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Worker’s Investment Strategy
I Let φ(π) = fraction of workers who actually acquire skills
when employers think this fraction is π.

I Optmistic beliefs: π ≥ 2
5 (unclear → manager).

I Hiring probability if qualified = 1.
I Hiring probability if unqualified = 1

2 .
I Expected gain from skill = cost threshold for investment =
fraction of qualified workers = φ(π) = 1

2 .

I Pessimistic beliefs: π ≥ 2
5 (unclear → clerk).

I Hiring probability if qualified = 1
4 .

I Hiring probability if unqualified = 0.
I Expected gain from skill = cost threshold for investment =
fraction of qualified workers = φ(π) = 1

4 .

I In equilibrium, employers’beliefs must be fulfilled: φ(π) = π.
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Multiple Equilibria

π

φ(π)
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Multiple Equilibria

π

φ(π)
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Multiple Equilibria

π

φ(π)

¼

½
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Multiple Equilibria
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Affi rmative Action, Incentives and Stereotype
I Does affi rmative action destroy incentives, investment in
skills, etc.?

I Does affi rmative action worsen stereotypes of beneficiaries?
I Theoretically, it can go either way:

I since AA makes entry easier, fewer members may invest.
I under statistical discrimination, if entry is too hard, it may
discourage investment.

I The effect can only be determined empirically.
I Our model illustrates potential positive effect on stereotypes
in two senses:

I the bad equilibrium improves locally (temporary effect).
I the bad equilibrium is destroyed altogether (permanent effect).
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Affi rmative Action, Incentives and Stereotype
I Suppose A’s are in bad equilibrium, W’s are in good
equilibrium.

I If quotas are introduced, employers may be forced to hire a
fraction α of A’s with unclear test results.

I For given α, a A worker invests if

(1− pq + αpq)w − c︸ ︷︷ ︸ ≥ αpuw︸ ︷︷ ︸
qualified payoff ≥ unqualified payoff

or, c ≤ [1− pq + α(pq − pu)]w
I If pq > pu (condition for multiple equilibria), the cost
threshold for investment increases with α.

I Incentives and stereotype improve in the bad equilibrium.
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Case 1: Local Improvement, Temporary Effect

π

φ(π)
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Case 2: Global Improvement, Permanent Effect

π

φ(π)
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